【题目】某运动员每次射击命中不低于8环的概率为,命中8环以下的概率为,现用随机模拟的方法估计该运动员三次射击中有两次命中不低于8环,一次命中8环以下的概率:先由计算器产生0到9之间取整数值的随机数,指定0、1、2、3、4、5表示命中不低于8环,6、7、8、9表示命中8环以下,再以每三个随机数为一组,代表三次射击的结果,产生了如下20组随机数:
据此估计,该运动员三次射击中有两次命中不低于8环,一次命中8环以下的概率为( )
A. B.
C. D.
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,侧面是等边三角形且垂直于底面,底面是矩形,,是的中点.
(1)证明:平面;
(2)点在棱上,且直线与直线所成角的余弦值为,求二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:,其离心率为,以原点为圆心,椭圆的短轴长为直径的圆被直线截得的弦长等于.
(1)求椭圆的方程;
(2)设为椭圆的左顶点,过点的直线与椭圆的另一个交点为,与轴相交于点,过原点与平行的直线与椭圆相交于两点,问是否存在常数,使恒成立?若存在,求出;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设, 满足约束条件,则的最大值为_______.
【答案】4
【解析】,画出可行域如下图所示,由图可知,目标函数在点处取得最大值为.
[点睛]本小题主要考查线性规划的基本问题,考查了指数的运算. 画二元一次不等式或表示的平面区域的基本步骤:①画出直线(有等号画实线,无等号画虚线);②当时,取原点作为特殊点,判断原点所在的平面区域;当时,另取一特殊点判断;③确定要画不等式所表示的平面区域.
【题型】填空题
【结束】
14
【题目】已知数列的前项和公式为,若,则数列的前项和__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点,,点为曲线上任意一点且满足.
(1)求曲线的方程;
(2)设曲线与轴交于、两点,点是曲线上异于、的任意一点,直线、分别交直线于点、.试问在轴上是否存在一个定点,使得?若存在,求出点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,曲线的参数方程为(为参数),在以坐标原点为极点,轴的正半轴为极轴的极坐标系中,曲线的极坐标方程为.
(1)求的极坐标方程与的直角坐标方程;
(2)设点的极坐标为, 与相交于两点,求的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com