精英家教网 > 高中数学 > 题目详情

【题目】在△ABC中,角A,B,C所对的边分别为a,b,c,cos2B﹣5cos(A+C)=2.
(1)求角B的值;
(2)若cosA= ,△ABC的面积为10 ,求BC边上的中线长.

【答案】
(1)解:∵cos2B﹣5cos(A+C)=2.

∴2cos2B+5cosB﹣3=0,解得:cosB= 或﹣3(舍去),又B∈(0,π),

∴B=


(2)解:∵cosA= ,∴可得:sinA=

∴sinC=sin(A+B)=sinAcosB+cosAsinB= × + × =

=

设b=7x,c=5x,则在△ABC中,由余弦定理得BC2=AB2+AC2﹣2ABACcosA,

∴BC= =8x,

∵△ABC的面积为10 = ABBCsinB= ×5x×8x× ,解得:x=1,

∴AB=5,BC=8,AC=7,BD=4,

∴在△ABD中,由余弦定理得AD2=AB2+BD2﹣2ABBDcosB=25+16﹣2×5×4× =21,

∴解得:AD=


【解析】(1)利用三角函数恒等变换的应用化简已知等式可得2cos2B+5cosB﹣3=0,进而解得cosB,结合B的范围即可得解B的值;(2)先根据两角和差的正弦公式求出sinC,再根据正弦定理得到b,c的关系,再利用余弦定理可求BC的值,再由三角形面积公式可求AB,BD的值,利用余弦定理即可得解AD的值.
【考点精析】掌握正弦定理的定义是解答本题的根本,需要知道正弦定理:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知分别是椭圆的长轴与短轴的一个端点, 是椭圆的左、右焦点,以点为圆心、3为半径的圆与以点为圆心、1为半径的圆的交点在椭圆上,且

(1)求椭圆的方程;

(2)设为椭圆上一点,直线轴交于点,直线轴交于点,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,内角A,B,C的对边分别为a,b,c,2cos(A﹣C)+cos2B=1+2cosAcosC.
(1)求证:a,b,c依次成等比数列;
(2)若b=2,求u=| |的最小值,并求u达到最小值时cosB的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C所对的边分别为a,b,c,若A= ,b(1﹣cosC)=ccosA,b=2,则△ABC的面积为( )
A.
B.2
C.
D.或2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题p:x1 , x2是方程x2﹣mx﹣1=0的两个实根,且不等式a2+4a﹣3≤|x1﹣x2|对任意m∈R恒成立;命题q:不等式x2+2x+a<0有解,若命题p∨q为真,p∧q为假,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,以Ox轴为始边作两个锐角α,β,它们的终边分别交单位圆于A,B两点.已知A,B两点的横坐标分别是

(1)求tan(α+β)的值;
(2)求α+2β的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 =(cos x,sin x), =(cos ,﹣sin ),且x∈[﹣ ]
(1)求 及| + |;
(2)若f(x)= ﹣| + |,求f(x)的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知:β∈(0, ),α∈( )且cos( ﹣α)= ,sin( +β)= ,求:cosα,cos(α+β)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数).

  (1)若函数是单调函数,求的取值范围;

2)求证:当时,都有

查看答案和解析>>

同步练习册答案