精英家教网 > 高中数学 > 题目详情

【题目】如图,有一直径为8米的半圆形空地,现计划种植果树,但需要有辅助光照.半圆周上的C处恰有一可旋转光源满足果树生长的需要,该光源照射范围是 ,点E,F在直径AB上,且
(1)若 ,求AE的长;
(2)设∠ACE=α,求该空地种植果树的最大面积.

【答案】
(1)解:由已知得△ABC为直角三角形,因为AB=8,

所以 ,AC=4,

在△ACE中,由余弦定理:CE2=AC2+AE2﹣2ACAEcosA,且

所以13=16+AE2﹣4AE,

解得AE=1或AE=3


(2)解:因为

所以∠ACE=α

所以

在△ACF中由正弦定理得:

所以

在△ACE中,由正弦定理得:

所以

由于:

因为 ,所以 ,所以

所以当 时,SECF取最大值为


【解析】(1)由已知利用余弦定理,即可求AE的长;(2)设∠ACE=α,求出CF,CE,利用三角形面积公式可求SCEF , 求出最大值,即可求该空地产生最大经济价值时种植甲种水果的面积.
【考点精析】解答此题的关键在于理解正弦定理的定义的相关知识,掌握正弦定理:,以及对余弦定理的定义的理解,了解余弦定理:;;

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列{an}前n项和为Sn
(1)若Sn=2n﹣1,求数列{an}的通项公式;
(2)若a1= ,Sn=anan+1 , an≠0,求数列{an}的通项公式;
(3)设无穷数列{an}是各项都为正数的等差数列,是否存在无穷等比数列{bn},使得an+1=anbn恒成立?若存在,求出所有满足条件的数列{bn}的通项公式;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,a、b、c分别是角A、B、C的对边,且 =﹣
(Ⅰ)求角B的大小;
(Ⅱ)若b= ,a+c=4,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱ABC﹣A1B1C1中,侧棱AA1⊥底面ABC,AA1=2,AB=BC=1,∠ABC=90°,外接球的球心为O,点E是侧棱BB1上的一个动点.有下列判断: ①直线AC与直线C1E是异面直线;②A1E一定不垂直于AC1;③三棱锥E﹣AA1O的体积为定值;④AE+EC1的最小值为2
其中正确的个数是(

A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若圆C1:x2+y2=m与圆C2:x2+y2﹣6x﹣8y+16=0外切. (Ⅰ)求实数m的值;
(Ⅱ)若圆C1与x轴的正半轴交于点A,与y轴的正半轴交于点B,P为第三象限内一点,且点P在圆C1上,直线PA与y轴交于点M,直线PB与x轴交于点N,求证:四边形ABNM的面积为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知锐角三角形的两个内角A,B满足 ,则有(
A.sin2A﹣cosB=0
B.sin2A+cosB=0
C.sin2A+sinB=0
D.sin2A﹣sinB=0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随机抽取某中学甲乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图.
(1)根据茎叶图判断哪个班的平均身高较高;
(2)计算甲班的样本方差;
(3)现从乙班这10名同学中随机抽取两名身高不低于173cm的同学,求身高为176cm的同学被抽中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下表是某厂的产量x与成本y的一组数据:

产量x(千件)

2

3

5

6

成本y(万元)

7

8

9

12

(Ⅰ)根据表中数据,求出回归直线的方程 = x (其中 = =
(Ⅱ)预计产量为8千件时的成本.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】求与直线y x 垂直,并且与两坐标轴围成的三角形面积为24的直线l的方程.

查看答案和解析>>

同步练习册答案