精英家教网 > 高中数学 > 题目详情
4.已知复数z=$\frac{1+2i}{3-i}$(i是虚数单位),则复数z的虚部是(  )
A.$\frac{1}{10}$iB.$\frac{1}{10}$C.$\frac{7}{10}$D.$\frac{7}{10}$i

分析 利用复数的除法的运算法则化简求解即可.

解答 解:复数z=$\frac{1+2i}{3-i}$=$\frac{(1+2i)(3+i)}{(3-i)(3+i)}$=$\frac{2+7i}{10}$=$\frac{1}{5}+\frac{7}{10}i$.
复数z的虚部是:$\frac{7}{10}$.
故选:C.

点评 本题考查复数的除法的运算法则的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.定积分:$\int_{-\frac{π}{2}}^{\frac{π}{2}}{({x+sinx})}dx$=(  )
A.$\frac{π^2}{8}+1$B.$\frac{π^2}{4}+2$C.1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.如图所示,平面四边形ABCD所在的平面与平面α平行,且四边形ABCD在平面α内的平行投影A1B1C1D1是一个平行四边,则四边形ABCD的形状一定是平行四边形.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某科技公司组织技术人员进行新项目研发,技术人员将独立地进行项目中不同类型的实验A,B,C,若A,B,C实验成功的概率分别为 $\frac{4}{5}$,$\frac{3}{4}$,$\frac{2}{3}$.
(1)对A,B,C实验各进行一次,求至少有一次实验成功的概率;
(2该项目要求实验A,B各做两次,实验C做3次,如果A实验两次都成功则进行实验B并获奖励10000元,两次B实验都成功则进行实验C并获奖励30000元,3次C实验只要有两次成功,则项目研发成功并获奖励60000元(不重复得奖),且每次实验相互独立,用X表示技术人员所获奖励的数值,写出X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知复数z的共轭复数是$\overline{z}$,z-$\overline{z}$=4i,z+$\overline{z}$=2,则z=1+2i.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.某电脑公司有6名产品推销员,其中5名的工作年限与年推销金额数据如表:
推销员编号12345
工作年限x/年35679
推销金额Y/万元23345
(1)求年推销金额Y关于工作年限x的线性回归方程;
(2)若第6名推销员的工作年限为11年,试估计他的年推销金额.
(参考公式:$\widehat{b}$═$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$=-$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{y}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.(B题)某射击运动员一次射击所得环数X的分布如下:
X8910
P0.30.50.2
现进行三次射击,以该运动员三次射击所得环数最高环数作为他的成绩,记为Y.
(Ⅰ)求该运动员三次都命中8环的概率;
(Ⅱ)求Y的分布及平均值(期望)EY.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知向量$\overrightarrow{a}$=(2cosx,1),$\overrightarrow{b}$=(sinx+cosx,-1),若f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$.
(1)求函数y=f(x)的单调递减区间;
(2)求函数y=f(x)在x∈[0,$\frac{π}{2}$]内的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在△ABC中,a、b、c分别为角A、B、C所对的边,已知a=2$\sqrt{3},b=2,sinC=\frac{1}{2}$.求c.

查看答案和解析>>

同步练习册答案