精英家教网 > 高中数学 > 题目详情
3.已知抛物线y2=2px(p>0)上一点M到焦点F的距离等于3p,则直线MF的斜率为(  )
A.±$\sqrt{5}$B.±1C.+$\frac{5}{2}$D.±$\frac{\sqrt{5}}{2}$

分析 设P(x0,y0)根据定义点M与焦点F的距离等于P到准线的距离,求出x0,然后代入抛物线方程求出y0即可求出坐标.然后求解直线的斜率.

解答 解:根据定义,点P与准线的距离也是3P,
设M(x0,y0),则P与准线的距离为:x0+$\frac{p}{2}$,
∴x0+$\frac{p}{2}$=3p,x0=$\frac{5}{2}$p,
∴y0=±$\sqrt{5}$p,
∴点M的坐标($\frac{5}{2}$p,±$\sqrt{5}$p).
直线MF的斜率为:$\frac{±\sqrt{5}p}{\frac{5p}{2}-\frac{p}{2}}$=$±\frac{\sqrt{5}}{2}$.
故选:D.

点评 本题考查了抛物线的定义和性质,解题的关键是根据定义得出点M与焦点F的距离等于M到准线的距离,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.如图所示的程序框图所表示的算法功能是输出(  )
A.使1×2×4×6×…×n≥2017成立的最小整数n
B.使1×2×4×6×…×n≥2017成立的最大整数n
C.使1×2×4×6×…×n≥2017成立的最小整数n+2
D.使1×2×4×6×…×n≥2017成立的最大整数n+2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.用数学归纳法证明:1+3+5+…+(2n-1)=n2(n∈N+

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=mlnx+(4-2m)x+$\frac{1}{x}$(m∈R).
(1)当m=2时,求函数f(x)的极值;
(2)设t,s∈[1,3],不等式|f(t)-f(s)|<(a+ln3)(2-m)-2ln3对任意的m∈(4,6)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=x2+2xsinθ-1,x∈[-$\frac{\sqrt{3}}{2}$,$\frac{1}{2}$].
(1)当$θ=\frac{π}{6}$时,求函数f(x)的最小值;
(2)若函数f(x)在x∈[-$\frac{\sqrt{3}}{2}$,$\frac{1}{2}$]上是单调增函数,且θ∈[0,2π],求θ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.甲,乙,丙,丁4名学生按任意次序站成一排,则事件“甲站在两端”的概率是$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知向量$\overrightarrow a=(1,m)$,$\overrightarrow b=(-1,2m+1)$,且$\overrightarrow a∥\overrightarrow b$,则m=-$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.甲,乙两人被随机分配到A,B,C三个不同的岗位(一个人只能去一个工作岗位),记分配到A岗位的人数为随机变量X,则随机变量X的数学期望E(X)=$\frac{2}{3}$,方差D(X)=$\frac{4}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数$f(x)=\left\{\begin{array}{l}-2x,x<0\\-{x^2}+2x,x≥0\end{array}\right.$若关于x的方程$f(x)=\frac{1}{2}x+m$恰有三个不相等的实数解,则m的取值范围是(  )
A.$[{0,\frac{3}{4}}]$B.$(0,\frac{3}{4})$C.$[{0,\frac{9}{16}}]$D.$(0,\frac{9}{16})$

查看答案和解析>>

同步练习册答案