精英家教网 > 高中数学 > 题目详情

【题目】已知四棱锥的底面为直角梯形,底面,且的中点.

1)求证:直线平面

2)若,求二面角的正弦值.

【答案】1)证明见解析;(2

【解析】

1)取中点,连结,推导出,从而平面平面,由此能证明直线平面

2)以为原点,轴,轴,轴,建立空间直角坐标系,利用向量法能求出二面角的余弦值.

1)证明:取中点,连结

的中点,

平面平面

平面直线平面

2)解:底面

的中点,

为原点,轴,轴,轴,建立空间直角坐标系,

01021

1110

设平面的法向量,则,取,得.

设平面的法向量,则,取,得.

设二面角的平面角为,则

二面角的余弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】“微信运动”是手机推出的多款健康运动软件中的一款,某学校140名老师均在微信好友群中参与了“微信运动”,对运动10000步或以上的老师授予“运动达人”称号,低于10000步称为“参与者”,为了解老师们运动情况,选取了老师们在4月28日的运动数据进行分析,统计结果如下:

运动达人

参与者

合计

男教师

60

20

80

女教师

40

20

60

合计

100

40

140

(Ⅰ)根据上表说明,能否在犯错误概率不超过0.05的前提下认为获得“运动达人”称号与性别有关?

(Ⅱ)从具有“运动达人”称号的教师中,采用按性别分层抽样的方法选取10人参加全国第四届“万步有约”全国健走激励大赛某赛区的活动,若从选取的10人中随机抽取3人作为代表参加开幕式,设抽取的3人中女教师人数为,写出的分布列并求出数学期望.

参考公式:,其中.

参考数据:

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是定义域为的偶函数,且满足,当时,,则函数在区间上零点的个数为(

A.9B.10C.18D.20

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数恰有两个零点,则实数的取值范围为________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知内角的角平分线.

(1)用正弦定理证明:

2)若,求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求此函数的极大值,并请直接写出此函数的零点个数

2)若函数,且此函数在区间内单调递增,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足a1=,an+1=3an-1(n∈N*).

(1)若数列{bn}满足bn=an-,求证:{bn}是等比数列;

(2)求数列{an}的前n项和Sn.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)判断并证明的单调性;

(Ⅱ)若不等式,对恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商场一年购进某种货物900吨,每次都购进x吨,运费为每次9万元,一年的总存储费用为万元

1)要使一年的总运费与总存储费用之和最小,则每次购买多少吨?

2)要使一年的总运费与总存储费用之和不超过585万元,则每次购买量在什么范围?

查看答案和解析>>

同步练习册答案