对函数y=f(x)定义域中任一个x的值均有f(x+a)=f(a-x),
(1)求证y=f(x)的图像关于直线x=a对称;
(2)若函数f(x)对一切实数x都有f(x+2)=f(2-x),且方程f(x)=0恰好有四个不同实根,求这些实根之和。
(1) 证明略(2) f(x)=0的四根之和为8
设(x0,y0)是函数y=f(x)图像上任一点,则y0=f(x0),
∵=a, ∴点(x0,y0)与(2a-x0,y0)关于直线x=a对称,
又f(a+x)=f(a-x),
∴f(2a-x0)=f[a+(a-x0)]=f[a-(a-x0)]=f(x0)=y0,
∴(2a-x0,y0)也在函数的图像上,
故y=f(x)的图像关于直线x=a对称.
(2)解:由f(2+x)=f(2-x)得y=f(x)的图像关于直线x=2对称,
若x0是f(x)=0的根,则4-x0也是f(x)=0的根,
若x1是f(x)=0的根,则4-x1也是f(x)=0的根,
∴x0+(4-x0)+ x1+(4-x1)=8
即f(x)=0的四根之和为8.
科目:高中数学 来源: 题型:
x2+ax+1 |
1 |
2 |
3 |
2 |
1 |
x2-x-2 |
lim |
x→2 |
1 |
x2-x-2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源:2010-2011学年山东省泰安市高三上学期期末考试数学理卷 题型:解答题
(本小题满分12分)
某企业科研课题组计划投资研发一种新产品,根据分析和预测,能获得10万元~1000万元的投资收益.企业拟制定方案对课题组进行奖励,奖励方案为:奖金y(单位:万元)随投资收益x(单位:万元)的增加而增加,且奖金不超过9万元,同时奖金也不超过投资收益的20%,并用函数y= f(x)模拟这一奖励方案.
(Ⅰ)试写出模拟函数y= f(x)所满足的条件;
(Ⅱ)试分析函数模型y= 4lgx-3是否符合奖励方案的要求?并说明你的理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分12分)
某企业科研课题组计划投资研发一种新产品,根据分析和预测,能获得10万元~1000万元的投资收益.企业拟制定方案对课题组进行奖励,奖励方案为:奖金y(单位:万元)随投资收益x(单位:万元)的增加而增加,且奖金不超过9万元,同时奖金也不超过投资收益的20%,并用函数y= f(x)模拟这一奖励方案.
(Ⅰ)试写出模拟函数y= f(x)所满足的条件;
(Ⅱ)试分析函数模型y= 4lgx-3是否符合奖励方案的要求?并说明你的理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com