精英家教网 > 高中数学 > 题目详情

对函数y=f(x)定义域中任一个x的值均有f(x+a)=f(ax),

(1)求证y=f(x)的图像关于直线x=a对称;

(2)若函数f(x)对一切实数x都有f(x+2)=f(2-x),且方程f(x)=0恰好有四个不同实根,求这些实根之和。

(1) 证明略(2) f(x)=0的四根之和为8


解析:

  设(x0,y0)是函数y=f(x)图像上任一点,则y0=f(x0),

=a, ∴点(x0,y0)与(2ax0,y0)关于直线x=a对称,

f(a+x)=f(ax),

f(2ax0)=fa+(ax0)]=fa-(ax0)]=f(x0)=y0,

∴(2ax0,y0)也在函数的图像上,

y=f(x)的图像关于直线x=a对称.

(2)解:由f(2+x)=f(2-x)得y=f(x)的图像关于直线x=2对称,

x0f(x)=0的根,则4-x0也是f(x)=0的根,

x1f(x)=0的根,则4-x1也是f(x)=0的根,

∴x0+(4-x0)+ x1+(4-x1)=8

f(x)=0的四根之和为8.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

关于函数y=f(x),有下列命题:
①若a∈[-2,2],则函数f(x)=
x2+ax+1
的定域为R;
②若f(x)=log
1
2
(x2-3x+2)
,则f(x)的单调增区间为(-∞,
3
2
)

③(理)若f(x)=
1
x2-x-2
,则
lim
x→2
[(x-2)f(x)]=0

(文)若f(x)=
1
x2-x-2
,则值域是(-∞,0)∪(0,+∞)
④定义在R的函数f(x),且对任意的x∈R都有:f(-x)=-f(x),f(1+x)=f(1-x),则4是y=f(x)的一个周期.
其中真命题的编号是
 
.(文理相同)

查看答案和解析>>

科目:高中数学 来源: 题型:

某企业科研课题组计划投资研发一种新产品,根据分析和预测,能获得10万元~1000万元的投资收益.企业拟制定方案对课题组进行奖励,奖励方案为:奖金y(单位:万元)随投资收益x(单位:万元)的增加而增加,且奖金不超过9万元,同时奖金也不超过投资收益的20%,并用函数y=f(x)模拟这一奖励方案.
(Ⅰ)试写出模拟函数y=f(x)所满足的条件;
(Ⅱ)试分析函数模型y=4lgx-3是否符合奖励方案的要求?并说明你的理由.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年山东省泰安市高三上学期期末考试数学理卷 题型:解答题

(本小题满分12分)

某企业科研课题组计划投资研发一种新产品,根据分析和预测,能获得10万元~1000万元的投资收益.企业拟制定方案对课题组进行奖励,奖励方案为:奖金y(单位:万元)随投资收益x(单位:万元)的增加而增加,且奖金不超过9万元,同时奖金也不超过投资收益的20%,并用函数y= f(x)模拟这一奖励方案.

(Ⅰ)试写出模拟函数y= f(x)所满足的条件;

(Ⅱ)试分析函数模型y= 4lgx-3是否符合奖励方案的要求?并说明你的理由.

 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某企业科研课题组计划投资研发一种新产品,根据分析和预测,能获得10万元~1000万元的投资收益.企业拟制定方案对课题组进行奖励,奖励方案为:奖金y(单位:万元)随投资收益x(单位:万元)的增加而增加,且奖金不超过9万元,同时奖金也不超过投资收益的20%,并用函数y=f(x)模拟这一奖励方案.
(Ⅰ)试写出模拟函数y=f(x)所满足的条件;
(Ⅱ)试分析函数模型y=4lgx-3是否符合奖励方案的要求?并说明你的理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)

某企业科研课题组计划投资研发一种新产品,根据分析和预测,能获得10万元~1000万元的投资收益.企业拟制定方案对课题组进行奖励,奖励方案为:奖金y(单位:万元)随投资收益x(单位:万元)的增加而增加,且奖金不超过9万元,同时奖金也不超过投资收益的20%,并用函数y= f(x)模拟这一奖励方案.

(Ⅰ)试写出模拟函数y= f(x)所满足的条件;

(Ⅱ)试分析函数模型y= 4lgx-3是否符合奖励方案的要求?并说明你的理由.

查看答案和解析>>

同步练习册答案