精英家教网 > 高中数学 > 题目详情
已知两个不共线的向量a,b满足a+2xb=xa+yb,那么实数x,y的值分别是(  )
A.0,0B.1,2C.0,1D.2,1
解;∵
a
b
不共线
a
+2x
b
=x
a
+y
b

由平面向量的基本定理得
1=x
2x=y

解得x=1,y=2
故选B
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知两个不共线的向量a,b满足a+2xb=xa+yb,那么实数x,y的值分别是(  )
A、0,0B、1,2C、0,1D、2,1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知两个不共线的向量
a
b
满足
a
=(1,
3
),
b
=(cosθ,sinθ)(θ∈R)

(1)若2
a
-
b
a
-7
b
垂直,求向量
a
b
的夹角;
(2)当θ∈[0,
π
2
]
时,若存在两个不同的θ使得|
a
+
3
b
|=|m
a
|
成立,求正数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知两个不共线的向量
a
b
,它们的夹角为θ,且|
a
|=3
|
b
|=1
,x为正实数.
(1)若
a
+2
b
a
-4
b
垂直,求tanθ;
(2)若θ=
π
6
,求|x
a
-
b
|
的最小值及对应的x的值,并判断此时向量
a
x
a
-
b
是否垂直?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知两个不共线的向量
a
b
,它们的夹角为θ,且|
a
|=3
|
b
|=1
,若
a
+
b
a
-4
b
垂直,则sin(θ+
π
6
)
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知两个不共线的向量
a
b
的夹角为θ,且|
a
|=3,|
b
|=1,x为正实数.
(1)若
a
+2
b
a
-4
b
垂直,求tanθ;
(2)若θ=
π
6
,求|x
a
-
b
|的最小值及对应的x的值,并指出此时向量
a
与x
a
-
b
的位置关系;
(3)若θ为锐角,对于正实数m,关于x的方程|x
a
-
b
|=|m
a
|有两个不同的正实数解,且x≠m,求m的取值范围.

查看答案和解析>>

同步练习册答案