精英家教网 > 高中数学 > 题目详情
14.若椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的面积为abπ,则${∫}_{0}^{\frac{\sqrt{2}}{2}}$$\sqrt{1{-2x}^{2}}$dx=(  )
A.$\frac{π}{4}$B.$\frac{π}{8}$C.$\frac{\sqrt{2}π}{4}$D.$\frac{\sqrt{2}π}{8}$

分析 根据积分的几何意义即可得到结论.

解答 解:设y=$\sqrt{1{-2x}^{2}}$,(y≥0),
则$\frac{{x}^{2}}{\frac{1}{2}}$+y2=1(y≥0)对应的曲线为椭圆的上半部分,对应的面积S=$\frac{1}{2}π×\frac{\sqrt{2}}{2}×1$=$\frac{\sqrt{2}π}{4}$,
根据积分的几何意义可得${∫}_{0}^{\frac{\sqrt{2}}{2}}$$\sqrt{1{-2x}^{2}}$dx=$\frac{\sqrt{2}π}{4}$,
故选:C.

点评 本题主要考查积分的计算,要求熟练掌握常见函数的积分公式,对于不好求的积分函数,要利用对应的区域面积进行计算.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.设0≤θ≤2π,如果sinθ>0且cos2θ>0,则θ的取值范围是(  )
A.0<θ<$\frac{3π}{4}$B.0<θ<$\frac{π}{4}$或$\frac{3π}{4}$<θ<πC.$\frac{3π}{4}$<θ<πD.$\frac{3π}{4}$<θ<$\frac{5π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设实数x,y,z满足x+5y+z=9,求x2+y2+z2的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.下列命题中,假命题是(1)(3)(选出所有可能的答案)
(1)有两个面互相平行,其余各个面都是平行四边形的多面体是棱柱
(2)四棱锥的四个侧面都可以是直角三角形
(3)有两个面互相平行,其余各面都是梯形的多面体是棱台
(4)若一个几何体的三视图都是矩形,则这个几何体是长方体.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列说法正确的是(  )
A.命题“?x0∈R,x02+x0+2013>0”的否定是“?x∈R,x2+x+2013<0”
B.命题p:函数f(x)=x2-2x仅有两个零点,则命题p是真命题
C.函数$f(x)=\frac{1}{x}$在其定义域上是减函数
D.给定命题p、q,若“p且q”是真命题,则?p是假命题

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知抛物线y=$\frac{1}{2}$x2的焦点为F,准线为l,M在l上,线段MF与抛物线交于N点,若|MN|=$\sqrt{2}$|NF|,则|MF|=(  )
A.2B.3C.$\sqrt{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设$a={({\frac{1}{2}})^{\frac{1}{2}}}$,$b=\root{4}{0.9}$,c=lg0.3,则a,b,c的大小关系是(  )
A.b>a>cB.a>b>cC.a>c>bD.c>a>b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知圆C:(x+1)2+y2=r2与抛物线D:y2=16x的准线交于A,B两点,且|AB|=8,则圆C的面积(  )
A.B.C.16πD.25π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图,阅读程序框图,若输出的S的值等于55,那么在程序框图中的判断框内应填写的条件是(  ) 
A.i>8B.i>9C.i>10D.i>11

查看答案和解析>>

同步练习册答案