A. | $\frac{π}{4}$ | B. | $\frac{π}{8}$ | C. | $\frac{\sqrt{2}π}{4}$ | D. | $\frac{\sqrt{2}π}{8}$ |
分析 根据积分的几何意义即可得到结论.
解答 解:设y=$\sqrt{1{-2x}^{2}}$,(y≥0),
则$\frac{{x}^{2}}{\frac{1}{2}}$+y2=1(y≥0)对应的曲线为椭圆的上半部分,对应的面积S=$\frac{1}{2}π×\frac{\sqrt{2}}{2}×1$=$\frac{\sqrt{2}π}{4}$,
根据积分的几何意义可得${∫}_{0}^{\frac{\sqrt{2}}{2}}$$\sqrt{1{-2x}^{2}}$dx=$\frac{\sqrt{2}π}{4}$,
故选:C.
点评 本题主要考查积分的计算,要求熟练掌握常见函数的积分公式,对于不好求的积分函数,要利用对应的区域面积进行计算.
科目:高中数学 来源: 题型:选择题
A. | 0<θ<$\frac{3π}{4}$ | B. | 0<θ<$\frac{π}{4}$或$\frac{3π}{4}$<θ<π | C. | $\frac{3π}{4}$<θ<π | D. | $\frac{3π}{4}$<θ<$\frac{5π}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 命题“?x0∈R,x02+x0+2013>0”的否定是“?x∈R,x2+x+2013<0” | |
B. | 命题p:函数f(x)=x2-2x仅有两个零点,则命题p是真命题 | |
C. | 函数$f(x)=\frac{1}{x}$在其定义域上是减函数 | |
D. | 给定命题p、q,若“p且q”是真命题,则?p是假命题 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 2 | B. | 3 | C. | $\sqrt{2}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | b>a>c | B. | a>b>c | C. | a>c>b | D. | c>a>b |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 5π | B. | 9π | C. | 16π | D. | 25π |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com