(本小题满分12分)
在平面直角坐标系xOy中,曲线y=x2-2x—3与两条坐标轴的三个交点都在圆C上.若圆C与直线x-y+a=0交于A,B两点,
(1)求圆C的方程;zxxk
(2)若,求a的值;
(3)若 OA⊥OB,(O为原点),求a的值.
(1) (x-1)2+(y+1)2=5. (2)或;(3) a=-1. 。
解析试题分析:(1)曲线y=x2-2x—3与y轴的交点为(0,-3),与x轴的交点为(-1,0),(3,0).
故可设圆C的圆心为(1,t),则有12+(t+3)2=(1+1)2+t2,解得t=.
则圆C的半径为.则以圆C的方程为(x-1)2+(y+1)2=5.
(2) , 圆心C到直线x-y+a=0的距离为
即,解得或
(3)设A(x1,y1),B(x2,y2),其坐标满足方程组:.
消去y,得到方程2x2+2ax+a2+2a-3=0. 由已知可得,判别式Δ=24-16a-4a2>0.
从而x1+x2=-a,x1x2=.①
由于OA⊥OB,可得x1x2+y1y2=0,又y1=x1+a,y2=x2+a,
所以2x1x2+a(x1+x2)+a2=0.②
由①,②得a=1,,满足Δ>0,故a=-1.
考点:本题主要考查圆的定义及标准方程,直线与圆的位置关系。
点评:典型题,关于圆的考查,往往以这种“连环题”的形式出现,首先求标准方程,往往不难。而涉及在直线与圆的位置关系,往往要利用韦达定理,实现“整体代换”。本题中利用OA⊥OB,可得x1x2+y1y2=0,从而将两根之积代入,方便求解。
科目:高中数学 来源: 题型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中数学 来源: 题型:
(2009湖南卷文)(本小题满分12分)
为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的、、.现有3名工人独立地从中任选一个项目参与建设.求:
(I)他们选择的项目所属类别互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人选择的项目属于民生工程的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分12分)
某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,
(注:利润与投资单位是万元)
(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com