精英家教网 > 高中数学 > 题目详情

【题目】已知等差数列{an}中,a10=30,a20=50.
(1)求通项公式;
(2)若Sn=242,求项数n.

【答案】
(1)解:a10=a1+9d=30,a20=a1+19d=50,

解得 a1=12,d=2.

∴an=a1 +(n﹣1)d=2n+10.


(2)解:∵Sn =na1+ n(n﹣1)d,

∴242=12n+ n(n﹣1)2,解得 n=11,或 n=﹣22 (舍去),

故取n=11.


【解析】(1)由a10=a1+9d=30,a20=a1+19d=50,求出首项和公差,即得等差数列{an} 的通项公式.(2)由Sn =242,可得 242=12n+ n(n﹣1)2,解方程求得项数n 的值.
【考点精析】通过灵活运用等差数列的通项公式(及其变式)和等差数列的前n项和公式,掌握通项公式:;前n项和公式:即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x﹣a|,g(x)=x2+2ax+1(a为正常数),且函数f(x)和g(x)的图象与y轴的交点重合.
(1)求a实数的值
(2)若h(x)=f(x)+b (b为常数)试讨论函数h(x)的奇偶性;
(3)若关于x的不等式f(x)﹣2 >a有解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆F1:(x+1)2+y2=1,圆F2:(x﹣1)2+y2=25,若动圆C与圆F1外切,且与圆F2内切,求动圆圆心C的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a>0,a≠1且loga3>loga2,若函数f(x)=logax在区间[a,2a]上的最大值与最小值之差为1.
(1)求a的值;
(2)解不等式
(3)求函数g(x)=|logax﹣1|的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}的前n项和是Sn , a1=5,且an=Sn1(n=2,3,4,…).
(1)求数列{an}的通项公式;
(2)求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=﹣x2+ax+b,且f(4)=﹣3.
(1)若函数f(x)在区间[2,+∞)上递减,求实数b的取值范围;
(2)若函数f(x)的图象关于直线x=1对称,且关于x的方程f(x)=log2m在区间[﹣3,3]上有解,求m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区为了解70﹣80岁的老人的日平均睡眠时间(单位:h),随机选择了50位老人进行调查,下表是这50位老人睡眠时间的频率分布表:

序号i

分组
(睡眠时间)

组中值(Gi

频数
(人数)

频率(Fi

1

[4,5)

4.5

6

0.12

2

[5,6)

5.5

10

0.20

3

[6,7)

6.5

20

0.40

4

[7,8)

7.5

10

0.20

5

[8,9]

8.5

4

0.08

在上述统计数据的分析中一部分计算见算法流程图,则输出的S的值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C所对的边分别为a,b,c,已知cosC+(cosA﹣ sinA)cosB=0.
(1)求角B的大小;
(2)若b= ,c=1,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,设圆弧x2+y2=1(x≥0,y≥0)与两坐标轴正半轴围成的扇形区域为M,过圆弧上中点A做该圆的切线与两坐标轴正半轴围成的三角形区域为N.现随机在区域N内投一点B,若设点B落在区域M内的概率为P,则P的值为(  )

A.
B.
C.
D.

查看答案和解析>>

同步练习册答案