精英家教网 > 高中数学 > 题目详情
11.已知等差数列{an}满足:a1=2,且a1,a2,a3成等比数列.
(1)求数列{an}的通顶公式.
(2)记Sn为数列{an}的前n项和,是否存在正整数n.使得Sn>60n+800?若存在,求n的最小值:若不存在,说明理由.

分析 (1)设出等差数列的公差d,由a1,a2,a3成等比数列列式求得d,则数列{an}的通顶公式可求;
(2)把Sn代入Sn>60n+800,求出n的范围,由n是负值,说明不存在正整数n,使得Sn>60n+800.

解答 解:(1)设等差数列{an}的公差为d,
由a1,a2,a3成等比数列,得(2+d)2=2(2+2d),
解得:d=0.
∴数列{an}为常数列,其通项公式为an=2;
(2)数列{an}的前n项和Sn=2n,
由Sn>60n+800,得2n>60n+800,解得:n$<-\frac{400}{29}$.
∴不存在正整数n,使得Sn>60n+800.

点评 本题考查等差数列的通项公式,考查了等比数列的性质,考查数列的函数特性,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知两个集合A={x∈R|y=$\sqrt{1-{x}^{2}}$},B={x|$\frac{x+1}{1-x}≥0$},则A∩B=(  )
A.{x|-1≤x≤1}B.{x|-1≤x<1}C.{-1,1}D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列数列中,构成等比数列的是(  )
A.2,3,4,5B.1,-2,-4,8C.0,1,2,4D.16,-8,4,-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在数列{an}(n∈N*)中,设a1=a2=1,a3=2.若数列{$\frac{{a}_{n+1}}{{a}_{n}}$}是等差数列,则a6=120.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=$\left\{\begin{array}{l}{1-|x-1|,x≤2}\\{-\frac{1}{4}{x}^{2}+2x-3,x>2}\end{array}\right.$,如在区间(1,+∞)上存在n(n≥2,n∈N*)个不同的数x1,x2,…xn,使得$\frac{f({x}_{1})}{{x}_{1}}$=$\frac{f({x}_{2})}{{x}_{2}}$=…=$\frac{f({x}_{n})}{{x}_{n}}$成立,则n的取值集合是{2,3}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若不等式组$\left\{\begin{array}{l}x-y+2≥0\\ x-5y+10≤0\\ x+y-8≤0\end{array}\right.$所表示的平面区域被直线y=kx+2分为面积相等的两部分,则k的值为$\frac{1}{2}$;若该平面区域存在点(x0,y0)使x0+ay0+2≤0成立,则实数a的取值范围是a≤-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.阅读如图所示的程序框图,运行相应的程序,输出的结果为(  )
A.2B.4C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在平面直角坐标系xOy中,已知圆C:(x-2)2+(y+1)2=5,过点P(5,0)且斜率为k的直线l与圆C相交于不同的两点A,B.
(Ⅰ)求k的取值范围;
(Ⅱ)若弦长|AB|=4,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知点A的坐标为(-1,0),点B是圆心为C的圆(x-1)2+y2=16上一动点,线段AB的垂直平分线交BC与点M,则动点M的轨迹方程为$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1.

查看答案和解析>>

同步练习册答案