精英家教网 > 高中数学 > 题目详情
18.已知数列{an}的前n项和为Sn,且满足${S_n}=2-({\frac{2}{n}+1}){a_n}({n∈{N^*}})$.
(Ⅰ)求{an}的通项公式an
(Ⅱ)记${b_n}={2^{n-1}}{a_n}$,求$\frac{1}{{{b_1}{b_3}}}+\frac{1}{{{b_2}{b_4}}}+…+\frac{1}{{{b_n}{b_{n+2}}}}$.

分析 (I)利用递推式与等比数列的通项公式即可得出;
(II)利用“裂项求和”即可得出.

解答 解:(I)∵满足${S_n}=2-({\frac{2}{n}+1}){a_n}({n∈{N^*}})$,
∴当n=1时,a1=2-(2+1)a1,解得a1=$\frac{1}{2}$.
当n≥2时,an=Sn-Sn-1=$2-(\frac{2}{n}+1){a}_{n}$-$[2-(\frac{2}{n-1}+1){a}_{n-1}]$,化为$\frac{{a}_{n}}{n}=\frac{1}{2}•\frac{{a}_{n-1}}{n-1}$.
∴数列$\{\frac{{a}_{n}}{n}\}$是等比数列,首项为$\frac{1}{2}$,公比为$\frac{1}{2}$.
∴$\frac{{a}_{n}}{n}$=$(\frac{1}{2})^{n}$.
∴${a}_{n}=\frac{n}{{2}^{n}}$.
(Ⅱ)${b_n}={2^{n-1}}{a_n}$=$\frac{n}{2}$.
∴$\frac{1}{{b}_{n}{b}_{n+2}}$=$\frac{4}{n(n+2)}$=$2(\frac{1}{n}-\frac{1}{n+2})$.
∴$\frac{1}{{{b_1}{b_3}}}+\frac{1}{{{b_2}{b_4}}}+…+\frac{1}{{{b_n}{b_{n+2}}}}$=$2[(1-\frac{1}{3})+(\frac{1}{2}-\frac{1}{4})$+$(\frac{1}{3}-\frac{1}{5})$+…+$(\frac{1}{n-1}-\frac{1}{n+1})+(\frac{1}{n}-\frac{1}{n+2})]$
=2$(1+\frac{1}{2}-\frac{1}{n+1}-\frac{1}{n+2})$
=3-$\frac{4n+6}{{n}^{2}+3n+2}$.

点评 本题考查了递推式的应用、等比数列的通项公式与“裂项求和”方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知$\overrightarrow{a}$=(cosx,sinx),$\overrightarrow{b}$=(cosx,$\sqrt{3}$cosx),f(x)=2$\overrightarrow{a}$•$\overrightarrow{b}$+1.
(1)求当$x∈[0,\frac{π}{2}]$时,f(x)的值域;
(2)若对任意$x∈[0,\frac{π}{2}]$和任意$α∈[\frac{π}{12},\frac{π}{3}]$,$k•\sqrt{1+sin2α}-sin2α≤f(x)+1$恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在平面直角坐标系xOy中,已知直线y=x+2与x轴,y轴分别交于M、N两点,点P在圆(x-a)2+y2=2上运动,若∠MPN恒为锐角,则a的取值范围是a>$\sqrt{7}-1$或a<-$\sqrt{7}-1$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.数列{an}是等比数列,若a2=1,a5=$\frac{1}{8}$,设Sn=a1a2+a2a3+…+anan+1,若3Sn≤m2+2m对任意n∈N*恒成立,则m的取值范围为(  )
A.-4≤m≤2B.m≤-4或m≥2C.-2≤m≤4D.m≤-2或m≥4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在△ABC中,角A、B、C所对应的边分别为a,b,c,A=$\frac{π}{3}$,cosB=$\frac{1}{7}$
(1)求sinC的值;
(2)若2c=b+2,求三边a,b.c的长,并求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.${∫}_{-1}^{1}$$\sqrt{4-{x}^{2}}$dx=$\frac{2π}{3}$+$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在△ABC中,角A,B,C的对边分别为a,b,c,已知c=2,$C=\frac{π}{3}$.
(1)若△ABC的面积为$\sqrt{3}$,求a,b;
(2)若sinC+sin(B-A)=sin2A,求a,b.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知直线y=kx+2与圆 x2+y2=1没有公共点,则k的取值范围是(  )
A.(-$\sqrt{2},\sqrt{2}}$)B.(-$\sqrt{3},\sqrt{3}}$)C.(-∞,-$\sqrt{2}}$)∪(${\sqrt{2}$,+∞)D.(-∞,-$\sqrt{3}}$)∪(${\sqrt{3}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知数列{an}的前n项和为Sn,a1=3,an+1=1+2Sn
(1)a2,a3,a4的值;
(2)求数列{an}的通项公式;
(3)设bn=$\frac{n}{{a}_{n}}$,证明数列{bn}的前n项和Tn<$\frac{9}{4}$.

查看答案和解析>>

同步练习册答案