精英家教网 > 高中数学 > 题目详情

【题目】如图1,在高为2的梯形中,,过分别作,垂足分别为.已知,将梯形沿

同侧折起,使得,得空间几何体,如图2.

(Ⅰ)证明:

(Ⅱ)求三棱锥的体积.

【答案】(Ⅰ)见解析(Ⅱ)

【解析】

试题分析:

(Ⅰ)连接,取的中点,连接,则的中位线,结合已知从而可得平行四边形,因此有,于是由线面平行的判定定理得线面平行;

(Ⅱ)关键是顶点的转化,由线面平行有 ,则体积可得.

试题解析:

(Ⅰ)证法一:连接,取的中点,连接,则

的中位线,所以.

由已知得,所以,连接

则四边形是平行四边形,所以

又因为所以,即.

证法二:延长交于点,连接,则

由已知得,所以的中位线,所以

所以,四边形是平行四边形,

又因为所以.

证法三:取的中点,连接,易得,即四边形

平行四边形,则,又

所以

又因为,所以四边形是平行四边形,所以

是平行四边形,所以,所以,所以

四边形是平行四边形,所以,又又

所以

,所以面,又,所以.

(Ⅱ)因为,所以 ,由已知得,四边形ABEF为正方形,且边长为2,则在图2中,AFBE,由已知AFBD,BEBD=B,,可得AFBDE, 又DE面BDE,所以AFDE,又AEDE,AFAE=E,所以DEABEF, ,所以,所以是三棱锥的高,四边形是直角梯形。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】近年来,郑州经济快速发展,跻身新一线城市行列,备受全国瞩目.无论是市内的井字形快速交通网,还是辐射全国的米字形高铁路网,郑州的交通优势在同级别的城市内无能出其右.为了调查郑州市民对出行的满意程度,研究人员随机抽取了1000名市民进行调查,并将满意程度以分数的形式统计成如下的频率分布直方图,其中

1)求的值;

2)若按照分层抽样从[50,60),[60,70)中随机抽取8人,再从这8人中随机抽取2人,求至少有1人的分数在[50,60)的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】新高考最大的特点就是取消文理分科,除语文、数学、外语之外,从物理、化学、生物、政治、历史、地理这6科中自由选择三门科目作为选考科目.某研究机构为了了解学生对全文(选择政治、历史、地理)的选择是否与性别有关,从某学校高一年级的1000名学生中随机抽取男生,女生各25人进行模拟选科.经统计,选择全文的人数比不选全文的人数少10.

1)估计在男生中,选择全文的概率.

2)请完成下面的列联表;并估计有多大把握认为选择全文与性别有关,并说明理由;

选择全文

不选择全文

合计

男生

5

女生

合计

附:,其中.

P

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.076

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知的三个内角,向量与向量共线,且角为锐角.

(1)求角的大小;

2)求函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】保险公司统计的资料表明:居民住宅区到最近消防站的距离x(单位:千米)和火灾所造成的损失数额y(单位:千元)有如下的统计资料:

距消防站距离x(千米)

1.8

2.6

3.1

4.3

5.5

6.1

火灾损失费用y(千元)

17.8

19.6

27.5

31.3

36.0

43.2

如果统计资料表明yx有线性相关关系,试求:

(Ⅰ)求相关系数(精确到0.01);

(Ⅱ)求线性回归方程(精确到0.01);

(III)若发生火灾的某居民区与最近的消防站相距10.0千米,评估一下火灾的损失(精确到0.01).

参考数据:

参考公式:相关系数 回归方程 中斜率和截距的最小二乘估计公式分别为:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的导数.

(Ⅰ)讨论不等式的解集;

(Ⅱ)时,若恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=x2-2ax+2(a∈R),当x∈[-1,+∞)时,恒成立,则a的取值范围是_________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某班有学生50人,其中男同学30人,用分层抽样的方法从该班抽取5人去参加某社区服务活动.

(1)求从该班男女同学在各抽取的人数;

(2)从抽取的5名同学中任选2名谈此活动的感受,求选出的2名同学中恰有1名男同学的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,其中是然对数底数.

(1)若函数有两个不同的极值点 ,求实数的取值范围;

(2)当时,求使不等式在一切实数上恒成立的最大正整数

查看答案和解析>>

同步练习册答案