【题目】在下列命题中:①在中,,,,则解三角形只有唯一解的充要条件是:;②当时,;③在中,若,则中一定为钝角三角形;④扇形圆心角为锐角,周长为定值,则它面积最大时,一定有;⑤函数的单增区间为,其中真命题的序号为_____.
【答案】①②③⑤;
【解析】
对每一个命题逐一分析判断得解. ①,利用正弦定理分析判断;②,利用反三角函数的图象分析判断;③,利用反证法判断;④,利用基本不等式判断得解;⑤,利用复合函数的单调性分析求解.
①,由正弦定理得,因为三角形有唯一解,所以或,所以该命题正确;
②,画图得
当时,,所以该命题是真命题;
③假设△ABC是锐角三角形,,
所以,显然矛盾;假设△ABC是直角三角形,显然A,B不可能是直角,所以C是直角,此时,与已知矛盾,所以中一定为钝角三角形,所以该命题是真命题;
④,设扇形的半径为,扇形圆心角为锐角,弧长为,周长为定值,则它面积,当且仅当即时取最大值,但是,不是锐角,所以该命题不正确;
⑤,因为函数是一个减函数,所以函数的单增区间为的减区间,所以该命题是真命题.
故答案为:①②③⑤
科目:高中数学 来源: 题型:
【题目】已知为坐标原点,椭圆:的焦距为,直线截圆:与椭圆所得的弦长之比为,椭圆与轴正半轴的交点分别为.
(1)求椭圆的标准方程;
(2)设点(且)为椭圆上一点,点关于轴的对称点为,直线,分别交轴于点,.试判断是否为定值?若是求出该定值,若不是定值,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在三棱锥中,BO、AO、CO所在直线两两垂直,且AO=CO,∠BAO=60°,E是AC的中点,三棱锥的体积为
(1)求三棱锥的高;
(2)在线段AB上取一点D,当D在什么位置时,和的夹角大小为
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知,为两非零有理数列(即对任意的,均为有理数),为一无理数列(即对任意的,为无理数).
(1)已知,并且对任意的恒成立,试求的通项公式.
(2)若为有理数列,试证明:对任意的,恒成立的充要条件为.
(3)已知,,对任意的,恒成立,试计算.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,椭圆过点,焦点,圆的直径为.
(1)求椭圆及圆的方程;
(2)设直线与圆相切于第一象限内的点,直线与椭圆交于两点.若的面积为,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)当时,求在处的切线方程;
(2)令,已知函数有两个极值点,且,求实数的取值范围;
(3)在(2)的条件下,若存在,使不等式对任意(取值范围内的值)恒成立,求实数的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com