精英家教网 > 高中数学 > 题目详情
已知集合A={x|y=lg(4-x2)},B={y|y=3x,x>0}时,A∩B=(  )
分析:求出集合A中函数的定义域,确定出集合A,求出集合B中函数的值域,确定出集合B,找出两集合的公共部分,即可确定出两集合的交集.
解答:解:由集合A中的函数y=lg(4-x2),得到4-x2>0,
解得:-2<x<2,
∴集合A={x|-2<x<2},
由集合B中的函数y=3x,x>0,得到y>1,
∴集合B={y|y>1},
则A∩B={x|1<x<2}.
故选B
点评:此题属于以函数的定义域与值域为平台,考查了交集及其运算,是高考中常考的基本题型.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知集合A={x|y=
1-x2
,x∈Z},B={y|y=x2+1,x∈A}
,则A∩B为(  )
A、∅B、{1}
C、[0,+∞)D、{(0,1)}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|y=
15-2x-x2
},B={y|y=a-2x-x2},若A∩B=A,则a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|y=
2x-x2
},B={y|y=3x,x>0},定义A*B
为图中阴影部分的集合,则A*B(  )
精英家教网
A、{x|0<x<2}
B、{x|1<x≤2}
C、{x|0≤x≤1或x≥2}
D、{x|0≤x≤1或x>2}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|y=lg(x+3)},B={x|x≥2},则下列结论正确的是(  )
A、-3∈AB、3∉BC、A∪B=BD、A∩B=B

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|y=lgx},B={x|x2+x-2≤0},则A∩B=(  )
A、[-1,0)B、(0,1]C、[0,1]D、[-2,1]

查看答案和解析>>

同步练习册答案