精英家教网 > 高中数学 > 题目详情
5.若样本x1+1,x2+1,…,xn+1的平均数为10,其方差为2,则样本x1+2,x2+2,…,xn+2的平均数为11,方差为2.

分析 利用样本的平均数、方差的性质直接求解.

解答 解:∵样本x1+1,x2+1,…,xn+1的平均数为10,其方差为2,
∴样本x1+2,x2+2,…,xn+2的平均数为10+1=11,
方差为:12×2=2.
故答案为:11,2.

点评 本题考查样本的平均数和方差的求法,是基础题,解题时要认真审题,考查运用统计知识解决简单实际问题的能力,数据处理能力和运用意识.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.设函数f(x)=$\left\{\begin{array}{l}{x^2},0≤x≤1\\ 1,1<x≤2\end{array}\right.$则定积分$\int_0^2{f(x)dx}$=$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若z=4+3i(i为虚数单位),则$\frac{\overline{z}}{|z|}$=(  )
A.$\frac{3}{5}$-$\frac{4}{5}$iB.$\frac{3}{5}$+$\frac{4}{5}$iC.$\frac{4}{5}$+$\frac{3}{5}$iD.$\frac{4}{5}$-$\frac{3}{5}$i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)的图象是由函数g(x)=cosx的图象经如下变换得到:现将g(x)图象上所有点的纵坐标伸长到原来的2倍,(横坐标不变),再讲所得的图象向右平移$\frac{π}{2}$个单位长度.
(1)求函数f(x)的解析式,并求其图象的对称轴的方程;
(2)已知关于x的方程f(x)+g(x)=m在[0,2π]内有两个不同的解α,β,
①求实数m的取值范围.
②证明:cos(α-β)=$\frac{2{m}^{2}}{5}$-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)上有一点M(-4,$\frac{9}{5}$)在抛物线y2=2px(p>0)的准线l上,抛物线的焦点也是椭圆焦点.
(1)求椭圆方程;
(2)若点N在抛物线上,过N作准线l的垂线,垂足为Q,求|MN|+|NQ|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在复平面内,复数z=1-i对应的向量为$\overrightarrow{OP}$,复数z2对应的向量为$\overrightarrow{OQ}$,那么向量$\overrightarrow{PQ}$对应的复数为(  )
A.1-iB.1+iC.-1+iD.-1-i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.取一个长度为4m的绳子,拉直后在任意位置剪断,那么剪得两段的长度都不少于1m的概率为(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.“微信运动”已成为当下热门的健身方式,小王的微信朋友圈内也有大量好友参与了“微信运动”,他随机选取了其中的40人(男、女各20人),记录了他们某一天的走路步数,并将数据整理如下:
步数
性别
0~20002001~50005001~80008001~10000>10000
12368
021062
(1)若采用样本估计总体的方式,试估计小王的所有微信好友中每日走路步数超过5000步的概率;
(2)已知某人一天的走路步数超过8000步被系统评定“积极型”,否则为“懈怠型”,根据题意完成下面的2×2列联表,并据此判断能否有95%以上的把握认为“评定类型”与“性别”有关?
积极型懈怠型总计
14822
61218
总计202040
附:${k^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,
P(K2≥k00.100.050.0250.010
k02.7063.8415.0246.635

查看答案和解析>>

同步练习册答案