精英家教网 > 高中数学 > 题目详情
(本题满分12分)
已知函数.
(1)当时,求证:函数上单调递增;
(2)若函数有三个零点,求的值;
(3)若存在,使得,试求的取值范围。
(1)证明:,由于所以故函数上单调递增(2)(3)

试题分析:(1)
由于,故当时,,所以
故函数上单调递增-----------------------------------4分
(2)当时,因为,且在R上单调递增,
有唯一解
所以的变化情况如下表所示:
x

0



0


递减
极小值
递增
又函数有三个零点,所以方程有三个根,
,所以,解得 -----------8分
(3)因为存在,使得
所以当时,
由(Ⅱ)知,上递减,在上递增,
所以当时,

,因为(当时取等号),
所以上单调递增,而
所以当时,;当时,
也就是当时,;当时,
①当时,由
②当时,由
综上知,所求的取值范围为------------------12分
点评:将函数零点问题不等式恒成立问题转化为求函数最值
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本题满分14分)
已知函数f(x)=lnx+
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)设mR,对任意的a∈(-l,1),总存在xo∈[1,e],使得不等式ma - (xo)<0成立,求实数m的取值范围;
(Ⅲ)证明:ln2 l+ 1n22,+…+ln2 n>∈N*).

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题14分)设函数.
(Ⅰ)讨论的单调性;
(Ⅱ)已知,若函数的图象总在直线的下方,求的取值范围;
(Ⅲ)记为函数的导函数.若,试问:在区间上是否存在)个正数,使得成立?请证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数的单调递增区间是            

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)在五棱锥,,,
,,
(1)求证:平面
(2)求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分16分)
已知函数.
(1)当时,若函数在区间上是单调增函数,试求的取值范围;
(2)当时,直接写出(不需给出演算步骤)函数 ()的单调增区间;
(3)如果存在实数,使函数)在
 处取得最小值,试求实数的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(14分) 已知函数
(1)当时,求曲线在点处的切线方程;
(2)当时,判断方程实根个数.
(3)若时,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)
已知函数在(0,1)上是增函数.(1)求的取值范围;
(2)设),试求函数的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(Ⅰ)求函数的单调区间和最小值;
(Ⅱ)若函数上是最小值为,求的值;
(Ⅲ)当(其中="2.718" 28…是自然对数的底数).

查看答案和解析>>

同步练习册答案