精英家教网 > 高中数学 > 题目详情
10.满足{1}⊆A?{1,2,3}的集合A的个数是3.

分析 集合A一定要含有1元素,且不能由3个元素,列举即可.

解答 解:∵$\left\{1\right\}⊆A\begin{array}{l}?\\≠\end{array}\left\{{1,2,3}\right\}$,
∴集合A一定要含有1元素,且不能由3个元素,
即A={1},{1,2}或{1,3}.
共有3个,
故答案为:3.

点评 子集包括真子集和它本身,集合的子集个数问题,对于集合M的子集问题一般来说,若M中有n个元素,则集合M的子集共有2n个,真子集2n-1个.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.已知实数a、b、c满足a+b=ab=c,有下列结论:①若c≠0,则$\frac{1}{a}$+$\frac{1}{b}$=1;②若a=3,则b+c=9;③若a=b=c,则abc=0;④若a、b、c中只有两个数相等,则a+b+c=8.其中正确的是①③④.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.一次函数的图象过点(2,0),和(-2,1),则此函数的解析式为y=$-\frac{1}{4}x$$+\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.不等式$\frac{2}{x}$<-3的解集是(  )
A.(-∞,-$\frac{2}{3}$)B.(-$∞,-\frac{2}{3}$)∪(0,+∞)C.(-$\frac{2}{3}$,0)∪(0,+∞)D.(-$\frac{2}{3}$,0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数$f(x)=\left\{{\begin{array}{l}{-x-4,x<0}\\{{x^3},x≥0}\end{array}}\right.$的图象与函数g(x)=ln(x+2)的图象的交点个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.小强从学校放学回家,先跑步后步行,如果y表示小强离学校的距离,x表示从学校出发后的时间,则下列图象中最有可能符合小强走法的是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在正方体ABCD-A1B1C1D1中,E,F分别为棱AD,AB的中点.
(1)求证:EF∥平面CB1D1
(2)求CB1与平面CAA1C1所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若曲线$\frac{{x}^{2}}{4}$+$\frac{y|y|}{9}$=1和曲线kx+y-3=0有三个交点,则k的取值范围是(-$\frac{3\sqrt{2}}{2}$,-$\frac{3}{2}$)∪($\frac{3}{2}$,$\frac{3\sqrt{2}}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设空间两个单位向量$\overrightarrow{OA}$=(m,n,0),$\overrightarrow{OB}$=(0,n,p)与向量$\overrightarrow{OC}$=(1,1,1)的夹角都等于$\frac{π}{4}$,求cos∠AOB的值.

查看答案和解析>>

同步练习册答案