精英家教网 > 高中数学 > 题目详情

【题目】已知函数

1当a=3时,方程的解的个数;

2对任意时,函数的图象恒在函数图象的下方,求a的取值范围;

3上单调递增,求a的范围;

【答案】1时,方程有两个解;当时,方程一个解;当时,方程有三个解2 3

【解析】

试题分析:1当a=3时,结合函数图像可得到m取不同范围时对应的方程的根的个数2由题意得对任意的实数x[1,2],fx<gx恒成立,即x|x-a|<1,当x[1,2]恒成立,由此能求出所有的实数a3将函数式转化为分段函数,利用二次函数单调性求得其单调区间,与区间比较,从而得到a的不等式,求解其范围

试题解析:1当a=3时,

时,方程有两个解;

时,方程一个解;

时,方程有三个解.

2 由题意知恒成立,即在x[1,2]上恒成立,在x[1,2]上恒成立

在x[1,2]上恒成立,

3

,即,fx在R单调递增,满足题意;

,即,fx,a,+单调递增,

fx-4,2上单调递增,a2或-4,

,即,舍去;

,即,fxa,+上单调递增,

fx-4,2上单调递增,或a-4,a>2

综上:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,过点P作圆O的割线PBA与切线PE,E为切点,连接AE、BE,∠APE的平分线与AE、BE分别交于点C、D,其中∠AEB=30°.

(1)求证:
(2)求∠PCE的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线的左右焦点分别为是双曲线上一点的内切圆半径为则其渐近线方程是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C的对边分别为a,b,c, =
(1)求角C的大小;
(2)求sinAsinB的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C的右焦点F(1,0),过F的直线l与椭圆C交于A,B两点,当l垂直于x轴时,|AB|=3.
(1)求椭圆C的标准方程;
(2)在x轴上是否存在点T,使得 为定值?若存在,求出点T坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1),证明:当时,;当时,

(2)的极大值点,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=emx﹣lnx﹣2.
(1)若m=1,证明:存在唯一实数t∈( ,1),使得f′(t)=0;
(2)求证:存在0<m<1,使得f(x)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其图像相邻的两个对称中心之间的距离为,且有一条对称轴为直线,则下列判断正确的是 ( )

A. 函数的最小正周期为

B. 函数的图象关于直线对称

C. 函数在区间上单调递增

D. 函数的图像关于点对称

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=ex﹣ax2﹣2x+b(e为自然对数的底数,a,b∈R).
(Ⅰ)设f′(x)为f(x)的导函数,证明:当a>0时,f′(x)的最小值小于0;
(Ⅱ)若a<0,f(x)>0恒成立,求符合条件的最小整数b.

查看答案和解析>>

同步练习册答案