精英家教网 > 高中数学 > 题目详情

如图,已知三棱锥A-BCD的棱长都相等,E,F分别是棱AB,CD的中点,则EF与BC所成的角是


  1. A.
    30°
  2. B.
    45°
  3. C.
    60°
  4. D.
    90°
B
分析:设G是AC的中点,连接EG、GF,则EG∥BC、GF∥AD,故EG∥BC,所以∠GEF的大小就等于EF与BC所成的角的大小,由此能求出EF与BC所成的角的大小.
解答:解:如图,设G是AC的中点,连接EG、GF,
∴EG∥BC、GF∥AD(三角形的中位线平行于第三边的一半),
∵EG与BC在同一平面上,EG∥BC,
∴∠GEF的大小就等于EF与BC所成的角的大小.
又∵三棱锥A-BCD是棱长都相等的正三棱锥,所以BC⊥AD,
∵EG∥BC、GF∥AD,∴∠EGF=90°,
EG=BC/2;GF=,(三角形的中位线平行于第三边的一半)
又∵BC=AD(棱长都相等),∴EG=GF,
∴△EGF是等腰直角三角形,
∴∠GEF=45°,
∴EF与BC所成的角为45°.
故选B.
点评:本题考查异面直线所成角的求法,解题时要认真审题,仔细解答,注意合理地化空间问题为平面问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知三棱锥A-BPC中,AP⊥PC,AC⊥BC,M为AB中点,D为PB中点,且△PMB为正三角形.
(1)求证:DM∥平面APC;
(2)求证:平面ABC⊥平面APC;
(3)若BC=4,AB=20,求三棱锥D-BCM的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知三棱锥A-PBC中,AP⊥PC,AC⊥BC,M为AB中点,D为PB中点,且AB=2MP.
(1)求证:DM∥平面APC;
(2)求证:平面ABC⊥平面APC.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知三棱锥A-BCD的底面是等边三角形,三条侧棱长都等于1,且∠BAC=30°,M,N分别在棱AC和AD上.
(1)将侧面沿AB展开在同一个平面上,如图②所示,求证:∠BAB′=90°.
(2)求BM+MN+NB的最小值.
(3)当BM+MN+NB取得最小值时,证明:CD∥平面BMN

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知三棱锥A-BCD的棱长都相等,E,F分别是棱AB,CD的中点,则EF与BC所成的角是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知三棱锥A-BPC中,AP⊥PC,AC⊥BC,M为AB的中点,D为PB的中点,且△PMB为正三角形.
(1)求证:DM∥平面APC;
(2)若BC=4,AB=20,求三棱锥D-BCM的体积.

查看答案和解析>>

同步练习册答案