精英家教网 > 高中数学 > 题目详情
5.函数y=ax+2+1(a>0且a≠1)的图象恒过的定点是(  )
A.(-2,0)B.(-1,0)C.(0,1)D.(-2,2)

分析 根据指数函数过定点的性质,即a0=1恒成立,即可得到结论.

解答 解:∵y=ax+2+1,
∴当x+2=0时,x=-2,
此时y=1+1=2,
即函数过定点(-2,2).
故选D.

点评 本题主要考查指数函数的图象和性质,直接解方程即可.比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.已知椭圆的方程为:$\frac{x^2}{4}+\frac{y^2}{3}=1$,点P的坐标为$(1,\frac{3}{2})$,一条不过点P直线l:y=kx+b交椭圆于A,B,PA⊥PB,且AB被y轴平分,则直线l的方程为y=$±\frac{3}{2}$x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.一个多面体的三视图和直观图如图所示,其中M,N,P分别是AB,SC,SD的中点.
(1)求证:AP∥平面SMC;
(2)求三棱锥BNMC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知抛物线y2=2x,点P为抛物线上任意一点,P在y轴上的射影为Q,点M(2,3),则PQ与PM的长度之和的最小值为$\frac{3\sqrt{5}-1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知集合A={x|-1<x≤3},集合B={x|0≤x<4}.求
(1)A∩B;
(2)A∪B;
(3)A∩(∁RB);
(4)∁R (A∪B).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若2<a<3,化简$\root{3}{{{{(2-a)}^3}}}+\root{4}{{{{(3-a)}^4}}}$的结果是(  )
A.5-2aB.2a-5C.1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知0≤x≤2求函数$y={({\frac{1}{4}})^{x-1}}-4{({\frac{1}{2}})^x}+2$的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.下列有关命题的说法正确的是(  )
A.命题“若x2=1,则x=1”的否命题为:“若x2=1,则x≠1”
B.命题“若x=y,则sinx=siny”的逆否命题为假命题
C.命题“存在x∈R,使得x2+x+1<0”的否定是:“对任意x∈R,均有x2+x+1<0”
D.△ABC中,A>B是sinA>sinB的充分必要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如图为从空中某个角度俯视北京奥运会主体育场“鸟巢”顶棚所得的局部示意图,在平面直角坐标系中,下列给定的一系列直线中(其中θ为参数,θ∈R),能形成这种效果的只可能是(  )
A.y=xsinθ+1B.y=x+cosθC.xcosθ+ysinθ+1=0D.y=xcosθ+sinθ

查看答案和解析>>

同步练习册答案