精英家教网 > 高中数学 > 题目详情
17.已知两个单位向量$\overrightarrow{{e}_{1}}$、$\overrightarrow{{e}_{2}}$的夹角为$\frac{π}{3}$,则|$\overrightarrow{{e}_{1}}$-2$\overrightarrow{{e}_{2}}$|=(  )
A.$\frac{1}{2}$B.2$\sqrt{3}$C.$\sqrt{7}$D.$\sqrt{3}$

分析 由已知求得$\overrightarrow{{e}_{1}}•\overrightarrow{{e}_{2}}$,然后求出|$\overrightarrow{{e}_{1}}$-2$\overrightarrow{{e}_{2}}$|2,开方后得答案.

解答 解:由题意可知:|$\overrightarrow{{e}_{1}}$|=|$\overrightarrow{{e}_{2}}$|=1,<$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$>=$\frac{π}{3}$,
∴$\overrightarrow{{e}_{1}}$•$\overrightarrow{{e}_{2}}$=|$\overrightarrow{{e}_{1}}$|•|$\overrightarrow{{e}_{2}}$|cos$\frac{π}{3}$=$\frac{1}{2}$,
∴|$\overrightarrow{{e}_{1}}$-2$\overrightarrow{{e}_{2}}$|2=${\overrightarrow{{e}_{1}}}^{2}$-4$\overrightarrow{{e}_{1}}$•$\overrightarrow{{e}_{2}}$+4${\overrightarrow{{e}_{2}}}^{2}$=1-4×$\frac{1}{2}$+4=3,
∴|$\overrightarrow{{e}_{1}}$-2$\overrightarrow{{e}_{2}}$|=$\sqrt{3}$.
故选:D.

点评 本题考查平面向量的数量积运算,考查了向量模的求法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.一个容量为80的样本中数据的最大值是140,最小值是51,组距是10,则应将样本数据分为(  )
A.10组B.9组C.8组D.7组

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在平面直角坐标系xOy中,点(4,3)到直线3x-4y+a=0的距离为1,则实数a的值是±5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在直角坐标系xOy中,圆C的参数方程为$\left\{\begin{array}{l}{x=-\frac{\sqrt{2}}{2}+rcosθ}\\{y=\frac{\sqrt{2}}{2}+rsinθ}\end{array}$(θ为参数,r>0),以O为极点,x轴的非负半轴为极轴,并取相同的长度单位建立极坐标系,直线l的极坐标方程为ρsin(θ+$\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$.
(1)求圆心的极坐标;
(2)若圆C上的点到直线l的最大距离为2$\sqrt{2}$,求r的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知矩阵M=$[\begin{array}{l}{3}&{0}\\{0}&{1}\end{array}]$,N=$[\begin{array}{l}{1}&{0}\\{0}&{\frac{1}{2}}\end{array}]$,则矩阵MN的逆矩阵是$[\begin{array}{l}{\frac{1}{3}}&{0}\\{0}&{2}\end{array}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.从抛物线y2=2px(p>0)的上一点P引其准线的垂线,垂足为M,设抛物线的焦点为F,若|PF|=4,M到直线PF的距离为4,则此抛物线的方程为(  )
A.y2=2xB.y2=4xC.y2=6xD.y2=8x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知数列{xn}满足${x}_{1}=\frac{1}{2}$,且${x}_{n+1}=\frac{{x}_{n}}{2-{x}_{n}}(n∈{N}^{+})$
(1)用数学归纳法证明:0<xn<1;
(2)设${a}_{n}=\frac{1}{{x}_{n}}$,求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.长方体ABCD-A1B1C1D1中,对角线A1C与棱CB、CD、CC1所成角分别为α、β、γ,则sin2α+sin2β+sin2γ=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知圆心为C 的圆经过点A(-3,2)和点B(1,0),且圆心C在直线y=x+1上.
(1)求圆C的标准方程.
(2)已知线段MN的端点M的坐标(3,4),另一端点N在圆C上运动,求线段MN 的中点G的轨迹方程.

查看答案和解析>>

同步练习册答案