精英家教网 > 高中数学 > 题目详情
2.已知非零向量$\overrightarrow a,\overrightarrow b$满足$|{\overrightarrow a}|=|{\overrightarrow b}|=|{\overrightarrow a+\overrightarrow b}|$,则$\overrightarrow a$与$2\overrightarrow a-\overrightarrow b$夹角的余弦值为$\frac{5\sqrt{7}}{14}$.

分析 利用两个向量的加减法的法则,以及其几何意义,余弦定理,数形结合求得$\overrightarrow a$与$2\overrightarrow a-\overrightarrow b$夹角的余弦值.

解答 解:非零向量$\overrightarrow a,\overrightarrow b$满足$|{\overrightarrow a}|=|{\overrightarrow b}|=|{\overrightarrow a+\overrightarrow b}|$,不妨设$|{\overrightarrow a}|=|{\overrightarrow b}|=|{\overrightarrow a+\overrightarrow b}|$=1,
设$\overrightarrow a$与$2\overrightarrow a-\overrightarrow b$夹角为θ,如图所示:
设$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow{b}$,$\overrightarrow{OC}$=$\overrightarrow{a}$+$\overrightarrow{b}$,则OA=OB=OC=1,设$\overrightarrow{OD}$=2$\overrightarrow{OA}$=2$\overrightarrow{a}$,则$\overrightarrow{BD}$=2$\overrightarrow{a}$-$\overrightarrow{b}$,
∠ODB即为θ,△OAC和△OBC都是边长等于1的等边三角形.
利用余弦定理可得BD=$\sqrt{{OD}^{2}{+OB}^{2}-2OA•OB•cos120°}$=$\sqrt{7}$,
cosθ=$\frac{{OD}^{2}{+BD}^{2}{-OB}^{2}}{2OD•BD}$=$\frac{5\sqrt{7}}{14}$,
故答案为:$\frac{{5\sqrt{7}}}{14}$.

点评 本题主要考查两个向量的加减法的法则,以及其几何意义,余弦定理的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的焦距为$2\sqrt{2}$,F1,F2为其左右焦点,M为椭圆上一点,且∠F1MF2=60°,${S_{△{F_1}M{F_2}}}=\frac{{2\sqrt{3}}}{3}$
(1)求椭圆C的方程;
(2)设直线l:y=kx+m与椭圆C相交于A、B两点,以线段OA,OB为邻边作平行四边形OAPB,其中顶点P在椭圆C上,O为坐标原点,求证:平行四边形OAPB的面积为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列函数中,既是偶函数又在区间(0,+∞)上单调递增的是(  )
A.$y={(\frac{1}{2})^x}$B.y=-x2C.y=log2xD.y=|x|+1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.一个四棱锥的三视图如图所示,这个四棱锥的体积为(  )
A.6B.8C.12D.24

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知圆锥的底面直径与高都是2,则该圆锥的侧面积为$\sqrt{5}π$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数$f(x)=\frac{x^2}{2e}-ax,g(x)=lnx-ax,a∈R$.
(1)解关于x(x∈R)的不等式f(x)≤0;
(2)证明:f(x)≥g(x);
(3)是否存在常数a,b,使得f(x)≥ax+b≥g(x)对任意的x>0恒成立?若存在,求出a,b的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.某四棱锥的三视图如图所示,该四棱锥的四个侧面的面积中最大的是(  )
A.3B.$2\sqrt{5}$C.6D.$3\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.手机完全充满电量,在开机不使用的状态下,电池靠自身消耗一直到出现低电量警告之间所能维持的时间称为手机的待机时间.为了解A,B两个不同型号手机的待机时间,现从某卖场库存手机中随机抽取A,B两个型号的手机各5台,在相同条件下进行测试,统计结果如下:
手机编号12345
A型待机时间(h)120125122124124
B型待机时间(h)118123127120a
已知 A,B两个型号被测试手机待机时间的平均值相等.
(Ⅰ)求a的值;
(Ⅱ)判断A,B两个型号被测试手机待机时间方差的大小(结论不要求证明);
(Ⅲ)从被测试的手机中随机抽取A,B型号手机各1台,求至少有1台的待机时间超过122小时的概率.
(注:n个数据x1,x2,…,xn的方差s2=$\frac{1}{n}$[(x1-$\overline{x}$)2+(x2-$\overline{x}$)2+…+(xn-$\overline{x}$)2],其中$\overline{x}$为数据x1,x2,…,xn的平均数)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.命题“?x∈R,x2≤1”的否定是?x∈R,x2>1.

查看答案和解析>>

同步练习册答案