精英家教网 > 高中数学 > 题目详情
9.某校200位学生期末考试物理成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60)、[60,70)、[70,80)、[80,90)、[90,100].
(1)求图中a的值;
(2)根据频率分布直方图,估计这200名学生物理成绩的平均分.

分析 (1)由频率分布直方图的性质能求出a的值.
(2)利用频率分布直方图,能估计出这200名学生物理成绩的平均分.

解答 解:(1)由频率分布直方图得(a+0.02+0.03+0.04+a)×10=1,
解得a=0.005.
(2)频率分布直方图,估计这200名学生物理成绩的平均分:
$\overline{x}$=55×0.05+65×0.4+75×0.3+85×0.2+95×0.05=73.

点评 本题考查实数值的求法,考查利用频率分布直方图求数据的平均值,是基础题,解题时要认真审题,注意频率分布直方图的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.若f(x)=2x2-lnx在定义域的子区间(a-1,a+1)上有极值,则实数a的取值范围是[1,$\frac{3}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知直角三角形ABC的斜边为AB,且A(-1,0),B(3,0),求:
(1)直角顶点C的轨迹方程;
(2)直角边BC的中点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知复数z1=1+i,z2=1-i,若z=$\frac{{z}_{1}}{{z}_{2}}$,则|z|=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若函数f(x)=$\left\{\begin{array}{l}{-x+6,x≤2}\\{3+lo{g}_{2}x,x>2}\end{array}\right.$的值域为[4,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在同一个平面直角坐标系中,一次函数y=ax+b和二次函数y=ax2+bx的可能是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.函数f(x)=|1-x|-|x-3|,x∈R的值域是[-2,2].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)=x2-ax+a(x∈R),在定义域内有且只有一个零点,存在0<x1<x2,使得不等式f(x1)>f(x2)成立. 若n∈N*,f(n)是数列{an}的前n项和.设各项均不为零的数列{cn}中,所有满足ck•ck+1<0的正整数k的个数称为这个数列{cn}的变号数,令cn=1-$\frac{4}{{a}_{n}}$,则数列{cn}的变号数是3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.(1)计算:0.027${\;}^{-\frac{1}{3}}$-(-$\frac{1}{7}$)-2+(2$\frac{7}{9}$)${\;}^{\frac{1}{2}}$-($\sqrt{2}$-1)0
(2)lg52+$\frac{2}{3}$lg8+lg5lg20+(lg2)2

查看答案和解析>>

同步练习册答案