【题目】已知f(x)=lnx+a(1-x),问:(1)讨论f(x) 的单调性;(2)当 f(x)有最大值,且最大值大于2a-2 时,求a的取值范围.
(1)(I)讨论f(x) 的单调性;
(2)(II)当 f(x)有最大值,且最大值大于2a-2 时,求a的取值范围.
【答案】
(1)
f(x)在(0,)单调递增,在(,+)单调递减
(2)
(0,1)
【解析】
(I)a0,f(x)在(0,+)是单调递增
a0.f(x)在(0,)单调递增,在( , +)单调递减
f(x)的定义域为(0,+),f’(x)=-a,若a0,则f’(x)0,f(x)在(0,+)是单调递增
若a0,则当x(0,)时,f’(x)0,
当x( , +)时,f’(x)0
所以f(x)在(0,)单调递增,在( , +)单调递减。
(II).由(I)知,当a0时,f(x)在(0,+)无最大值
当a0.f(x)在x=取得最大值,最大值为f()=ln()+a(1-)=-lna+a-1
因此f()2a-2lna+a-10
令g(a)=lna+a-1,则g(a)在(0,+)是增函数,g(1)=0,于是,当0a1时g(a)0,当a1时,g(a)0,因此a的取值范围是(0,1)。
【考点精析】通过灵活运用函数单调性的判断方法,掌握单调性的判定法:①设x1,x2是所研究区间内任两个自变量,且x1<x2;②判定f(x1)与f(x2)的大小;③作差比较或作商比较即可以解答此题.
科目:高中数学 来源: 题型:
【题目】如图,已知菱形ABEF所在的平面与△ABC所在的平面相互垂直,AB=4,BC= ,BC⊥BE,∠ABE= .
(1)求证:BC⊥平面ABEF;
(2)求平面ACF与平面BCE所成的锐二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知D= ,给出下列四个命题:
P1:(x,y)∈D,x+y+1≥0;
P2:(x,y)∈D,2x﹣y+2≤0;
P3:(x,y)∈D, ≤﹣4;
P4:(x,y)∈D,x2+y2≤2.
其中真命题的是( )
A.P1 , P2
B.P2 , P3
C.P2 , P4
D.P3 , P4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知a,b,c分别是△ABC的内角A,B,C所对的边,a=2bcosB,b≠c.
(1)证明:A=2B;
(2)若a2+c2=b2+2acsinC,求A.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,长方形的边AB=2,BC=1,O是AB的中点,点P沿着边BC,CD与DA运动,记BOP=x,将动点P到A,B两点距离之和表示为x的函数f(x),则图像大致为()
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,长方形的边AB=2,BC=1,O是AB的中点,点P沿着边BC,CD与DA运动,记BOP=x,将动点P到A,B两点距离之和表示为x的函数f(x),则图像大致为()
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图O是等腰三角形ABC内一点,圆O与△ABC的底边BC交于M,N两点,与底边上的高交于点G,且与AB,AC分别相切于E,F两点.
(1)(I)证明EF//BC
(2)(II)若AG等于圆O半径,且AE=MN=2,求四边形EBCF的面积
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(2015·新课标I卷)Sn为数列{an}的前n项和.已知an>0,an2+2an=4Sn+3,
(1)求{an}的通项公式;
(2)设bn=,求数列{bn}的前n项和.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等差数列{an}的前n项的和记为Sn.如果a4=-12,a8=-4.
(1)求数列{an}的通项公式;
(2)求Sn的最小值及其相应的n的值;
(3)从数列{an}中依次取出a1,a2,a4,a8,…,,…,构成一个新的数列{bn},求{bn}的前n项和
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com