【题目】某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花做垃圾处理.
(Ⅰ)若花店一天购进17枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式.
(Ⅱ)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:
日需求量n | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
频数 | 10 | 20 | 16 | 16 | 15 | 13 | 10 |
(i)假设花店在这100天内每天购进17枝玫瑰花,求这100天的日利润(单位:元)的平均数;
(ii)若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率.
(命题意图)本题主要考查给出样本频数分别表求样本的均值、将频率做概率求互斥事件的和概率,是简单题.
【答案】(Ⅰ)(Ⅱ)
【解析】
试题(1)根据卖出一枝可得利润5元,卖不出一枝可得赔本5元,即可建立分段函数;(2)①这100天的日利润的平均数,利用100天的销售量除以100即可得到结论;②当天的利润不少于75元,当且仅当日需求量不少于16枝,故可求当天的利润不少于75元的概率
试题解析:(1)当日需求量n≥17时,利润y=85.
当日需求量n<17时,利润y=10n-85.
所以y关于n的函数解析式为(n∈N).
(2)①这100天中有10天的日利润为55元,20天的日利润为65元,
16天的日利润为75元,54天的日利润为85元,
所以这100天的日利润的平均数为×(55×10+65×20+75×16+85×54)=76.4.
②利润不低于75元时日需求量不少于16枝,
故当天的利润不少于75元的概率为p=0.16+0.16+0.15+0.13+0.1=0.7.
科目:高中数学 来源: 题型:
【题目】在正方体中,点E是棱的中点,点F是线段上的一个动点.有以下三个命题:
①异面直线与所成的角是定值;
②三棱锥的体积是定值;
③直线与平面所成的角是定值.
其中真命题的个数是( )
A. 3 B. 2 C. 1 D. 0
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“一世”又叫“一代”.东汉·王充《论衡·宜汉篇》:“且孔子所谓一世,三十年也”,清代·段玉裁《说文解字注》:“三十年为一世,按父子相继曰世”.而当代中国学者测算“一代”平均为25年.另根据国际一家研究机构的研究报告显示,全球家族企业的平均寿命其实只有26年,约占总量的的家族企业只能传到第二代,约占总量的的家族企业只能传到第三代,约占总量的家族企业可以传到第四代甚至更久远(为了研究方便,超过四代的可忽略不计).根据该研究机构的研究报告,可以估计该机构所认为的“一代”大约为( )
A.23年B.22年C.21年D.20年
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】波罗尼斯(古希腊数学家,约公元前262-190年)的著作《圆锥曲线论》是古代世界光辉的科学成果,它将圆锥曲线的性质网罗殆尽几乎使后人没有插足的余地.他证明过这样一个命题:平面内与两定点距离的比为常数k(且)的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.现有,,则当的面积最大时,AC边上的高为_______________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,直线的参数方程为(其中t为参数),以坐标原点O为极点,x轴的正半轴为极轴的极坐标系中,点A的极坐标为,直线经过点A.曲线C的极坐标方程为.
(1)求直线的普通方程与曲线C的直角坐标方程;
(2)过点作直线的垂线交曲线C于D,E两点(D在x轴上方),求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知,设函数,.
(1)试讨论的单调性;
(2)设函数,是否存在实数,使得存在两个极值点,,且满足?若存在,求的取值范围;若不存在,请说明理由.
注:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《九章算术》中盈不足章中有这样一则故事:“今有良马与驽马发长安,至齐. 齐去长安三千里. 良马初日行一百九十三里,日增一十二里;驽马初日行九十七里,日减二里.” 为了计算每天良马和驽马所走的路程之和,设计框图如下图. 若输出的 的值为 350,则判断框中可填( )
A. B.
C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,曲线C的参数方程为,(θ为参数),以原点为极点,x轴非负半轴为极轴建立极坐标系.
(1)求曲线C的极坐标方程;
(2)在平面直角坐标系xOy中,A(﹣2,0),B(0,﹣2),M是曲线C上任意一点,求△ABM面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一个多面体的直观图及三视图如图所示,其中M ,N 分别是AF、BC 的中点
(1)求证:MN∥平面CDEF;
(2)求多面体A-CDEF的体积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com