精英家教网 > 高中数学 > 题目详情
(本小题满分14分)已知抛物线
(1)设是C1的任意两条互相垂直的切线,并设,证明:点M的纵坐标为定值;
(2)在C1上是否存在点P,使得C1在点P处切线与C2相交于两点A、B,且AB的中垂线恰为C1的切线?若存在,求出点P的坐标;若不存在,说明理由。
(1)见解析(2)这样点P存在,其坐标为
(1)
设切点分别为

  ①
方程为 ②


所以,即点M的纵坐标为定值
(2)设
则C1在点P处切线方程为:
代入方程




  ③
由(1)知
从而

进而得[
解得,且满足③
所以这样点P存在,其坐标为      14分[
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(12分)在平面直角坐标系xOy中,已知三点A(-1,0),B(1,0),,以A、B为焦点的椭圆经过点C。
(I)求椭圆的方程;
(II)设点D(0,1),是否存在不平行于x轴的直线与椭圆交于不同两点M、N,使
?若存在,求出直线斜率的取值范围;若不存在,请说明理由:
(III)对于y轴上的点P(0,n),存在不平行于x轴的直线与椭圆交于不同两点M、N,使,试求实数n的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知椭圆的左、右顶点分别为曲线是以椭圆中心为顶点,为焦点的抛物线.
(Ⅰ)求曲线的方程;
(Ⅱ)直线与曲线交于不同的两点时,求直线的倾斜角的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分18分)本题共有3个小题,第1小题满分3分,第2小题满分8分,第3小题满分7分.
已知抛物线为常数),为其焦点.
(1)写出焦点的坐标;
(2)过点的直线与抛物线相交于两点,且,求直线的斜率;
(3)若线段是过抛物线焦点的两条动弦,且满足,如图所示.求四边形面积的最小值

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若椭圆与双曲线均为正数)有共同的焦点F1F2P是两曲线的一个公共点,则等于           (   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆方程为,O为原点,F为右焦点,点M是椭圆右准线上(除去与轴的交点)的动点,过F作OM的垂线与以OM为直线的圆交于点N,则线段ON的长为             (   )
A.B.C.D.不确定

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

平面内称横坐标为整数的点为“次整点”.过函数图象上任意两个次整点作直线,则倾斜角大于45°的直线条数为.
A.10B.11C.12D.13

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知双曲线,焦点F2到渐近线的距离为,两条准线之间的距离为1。  (I)求此双曲线的方程;  (II)过双曲线焦点F1的直线与双曲线的两支分别相交于A、B两点,过焦点F2且与AB平行的直线与双曲线分别相交于C、D两点,若A、B、C、D这四点依次构成平行四边形ABCD,且,求直线AB的方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

求下列标准方程(8分)
(1)椭圆的两个焦点坐标分别为(0,2),(0,-2),且点P)在椭圆上.
(2)椭圆长轴是短轴的3倍,且过点A(4,0).
(3)双曲线经过点(-3,2),且一条渐近线为y=x
(4)双曲线离心率为,且过点(4,).

查看答案和解析>>

同步练习册答案