精英家教网 > 高中数学 > 题目详情

(本小题满分14分)已知函数

   (1)若在的图象上横坐标为的点处存在垂直于y 轴的切线,求a 的值;

   (2)若在区间(-2,3)内有两个不同的极值点,求a 取值范围;

   (3)在(1)的条件下,是否存在实数m,使得函数的图象与函数的图象恰有三个交点,若存在,试出实数m 的值;若不存在,说明理由.

 

【答案】

解:(1) ;   (2)a的取值范围为

(3)存在的图象恰有三个交点

【解析】本题主要考查函数与方程的综合运用,主要涉及了方程的根与函数的零点间的转化.还考查了计算能力和综合运用知识的能力.

(1)先求出函数的导数,再由f′( )=0求解a.

(2)将“f(x)在区间(-2,3)内有两个不同的极值点”转化为“方程f′(x)=0在区间(-2,3)内有两个不同的实根”,用△>0求解.

(3)在(1)的条件下,a=1,“要使函数f(x)与g(x)=x4-5x3+(2-m)x2+1的图象恰有三个交点”即为“方程x2(x2-4x+1m)=0恰有三个不同的实根”.因为x=0是一个根,所以方程x2-4x+1-m=0应有两个非零的不等实根,再用判别式求解.

解:(1)依题意,

                  

    …………………………3分

   (2)若在区间(—2,3)内有两个不同的极值点,

    则方程在区间(—2,3)内有两个不同的实根,

   

    但a=0时,无极值点,

    ∴a的取值范围为

   (3)在(1)的条件下,a=1,要使函数的图象恰有三个交点,等价于方程

    即方程恰有三个不同的实根。

    =0是一个根,

    应使方程有两个非零的不等实根,

    由      存在的图象恰有三个交点

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•广东模拟)(本小题满分14分 已知函数f(x)=
3
sin2x+2sin(
π
4
+x)cos(
π
4
+x)

(I)化简f(x)的表达式,并求f(x)的最小正周期;
(II)当x∈[0,
π
2
]  时,求函数f(x)
的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分14分)设椭圆C1的方程为(ab>0),曲线C2的方程为y=,且曲线C1C2在第一象限内只有一个公共点P。(1)试用a表示点P的坐标;(2)设AB是椭圆C1的两个焦点,当a变化时,求△ABP的面积函数S(a)的值域;(3)记min{y1,y2,……,yn}为y1,y2,……,yn中最小的一个。设g(a)是以椭圆C1的半焦距为边长的正方形的面积,试求函数f(a)=min{g(a), S(a)}的表达式。

查看答案和解析>>

科目:高中数学 来源:2011年江西省抚州市教研室高二上学期期末数学理卷(A) 题型:解答题

(本小题满分14分)
已知=2,点()在函数的图像上,其中=.
(1)证明:数列}是等比数列;
(2)设,求及数列{}的通项公式;
(3)记,求数列{}的前n项和,并证明.

查看答案和解析>>

科目:高中数学 来源:2015届山东省威海市高一上学期期末考试数学试卷(解析版) 题型:解答题

 (本小题满分14分)

某网店对一应季商品过去20天的销售价格及销售量进行了监测统计发现,第天()的销售价格(单位:元)为,第天的销售量为,已知该商品成本为每件25元.

(Ⅰ)写出销售额关于第天的函数关系式;

(Ⅱ)求该商品第7天的利润;

(Ⅲ)该商品第几天的利润最大?并求出最大利润.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年广东省高三下学期第一次月考文科数学试卷(解析版) 题型:解答题

(本小题满分14分)已知的图像在点处的切线与直线平行.

⑴ 求满足的关系式;

⑵ 若上恒成立,求的取值范围;

⑶ 证明:

 

查看答案和解析>>

同步练习册答案