【题目】已知函数,其中为实数.
(1)求的单调区间;
(2)若,则当时,恒成立,求的取值范围.
【答案】(1)见解析;(2)
【解析】
(1)先求出函数的解析式,再对其求导,利用导数与函数单调性的关系即可求解;
(2)先通过分类讨论去掉绝对值,再将不等式恒成立问题转化为函数的最值问题,然后根据函数的单调性求出最值,则问题获解.
解:(1)由题意得,,
所以.
所以或时,恒成立,
即当时,恒成立,
所以的单调递减区间为,无单调递增区间.
当时,令,得,
令,得或,
所以的单调递增区间为,
单调递减区间为.
综上,当时,的单调递减区间为,无单调递增区间;
当时,)的单调递增区间为,
单调递减区间为.
(2)当时,恒成立,
等价于当时,恒成立.
由得.
令.
①若
在上单调递减,
所以,所以,
则,与矛盾,故此时不存在.
②若,
当时,,
在上单调递减,
所以,此时,符合题意.
当时,.
令得.
令,则在上恒成立,
所以在上单调递增,
所以当时,,所以.
所以则在上单调递增,
所以,
所以,
即.
又,
所以.
综上,实数的取值范围为.
科目:高中数学 来源: 题型:
【题目】从某工厂的一个车间抽取某种产品50件,产品尺寸(单位:cm)落在各个小组的频数分布如下表:
数据分组 | [12.5,15.5) | [15.5,18.5) | [18.5,21.5) | [21.5,24.5) | [24.5,27.5) | [27.5,30.5) | [30.5,33.5) |
频数 | 3 | 8 | 9 | 12 | 10 | 5 | 3 |
(1)根据频数分布表,求该产品尺寸落在[27.5,33.5]内的概率;
(2)求这50件产品尺寸的样本平均数(同一组中的数据用该组区间的中点值作代表);
(3)根据频数分布对应的直方图,可以认为这种产品尺寸服从正态分布,其中近似为样本平均值,近似为样本方差,经计算得.利用该正态分布,求().
附:(1)若随机变量服从正态分布,则;(2).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某品牌布娃娃做促销活动:已知有50个布娃娃,其中一些布娃娃里面有奖品,参与者可以先在50个布娃娃中购买5个,看完5个布娃娃里面的结果再决定是否将剩下的布娃娃全部购买,设每个布娃娃有奖品的概率为,且各个布娃娃是否有奖品相互独立.
(1)记5个布娃娃中有1个有奖品的概率为,当时,的最大值,求;
(2)假如这5个布娃娃中恰有1个有奖品,以上问中的作为p的值.已知每次购买布娃娃需要2元,若有中奖,则中奖者每次可得奖金15元.以最终奖金的期望作为决策依据,是否该买下剩下所有的45个布娃娃;
(3)若已知50件布娃娃中有10个布娃娃有奖品,从这堆布娃娃中任意购买5个,若抽到k个有奖品可能性最大,求k的值.(k为正整数)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知可导函数f(x)的定义域为,且满足,,则对任意的,“”是“”的( )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱柱中,四边形ABCD为平行四边形,且点在底面上的投影H恰为CD的中点.
(1)棱BC上存在一点N,使得AD⊥平面,试确定点N的位置,说明理由;
(2)求三棱锥的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】现有6名选手参加才艺比赛,其中男、女选手各3名,且3名男选手分别表演歌唱、舞蹈和魔术,3名女选手分别表演歌唱、舞蹈和魔术,若要求相邻出场的选手性别不同且表演的节目不同,则不同的出场方式的种数为( )
A.6B.12C.18D.24
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)在定义域(0,+∞)上是单调函数,且x∈(0,+∞),f(f(x)﹣ex+x)=e.若不等式2f(x)﹣f′(x)﹣3≥ax对x∈(0,+∞)恒成立,则a的取值范围是( )
A.(﹣∞,e﹣2]B.(﹣∞,e﹣1]C.(﹣∞,2e﹣3]D.(﹣∞,2e﹣1]
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】平面直角坐标系xOy中,抛物线E顶点在坐标原点,焦点为.以坐标原点为极点,x轴非负半轴为极轴建立极坐标系.
(Ⅰ)求抛物线E的极坐标方程;
(Ⅱ)过点倾斜角为的直线l交E于M,N两点,若,求.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com