精英家教网 > 高中数学 > 题目详情
8.椭圆$\frac{x^2}{13}+\frac{y^2}{4}=1$的焦点为F1,F2,点P是椭圆上的动点,当∠F1PF2为钝角时,点P的横坐标的取值范围是$(-\frac{{\sqrt{65}}}{3},\frac{{\sqrt{65}}}{3})$.

分析 设P(x,y),则$\frac{x^2}{13}+\frac{y^2}{4}=1$,可得y2=4$(1-\frac{{x}^{2}}{13})$.由于∠F1PF2为钝角,可得$\overrightarrow{P{F}_{1}}•\overrightarrow{P{F}_{2}}$<0,解出即可.

解答 解:由椭圆的标准方程可得:a2=13,b=2,
∴$c=\sqrt{{a}^{2}-{b}^{2}}$=3.
F1(-3,0),F2(3,0).
设P(x,y),则$\frac{x^2}{13}+\frac{y^2}{4}=1$,
∴y2=4$(1-\frac{{x}^{2}}{13})$.
∵∠F1PF2为钝角,
∴$\overrightarrow{P{F}_{1}}•\overrightarrow{P{F}_{2}}$=(x+3,y)•(x-3,y)=x2-9+y2<0,
∴x2-9+4$(1-\frac{{x}^{2}}{13})$<0.
化为x2$<\frac{65}{9}$,
解得$-\frac{\sqrt{65}}{3}$<x<$\frac{\sqrt{65}}{3}$.
∴点P的横坐标的取值范围是$(-\frac{{\sqrt{65}}}{3},\frac{{\sqrt{65}}}{3})$,
故答案为:$(-\frac{{\sqrt{65}}}{3},\frac{{\sqrt{65}}}{3})$.

点评 本题考查了椭圆的标准方程及其性质、向量夹角公式与数量积运算性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.如图,已知正方形ABCD和矩形ACEF所在平面互相垂直,AB=$\sqrt{2}$,AF=1,M是线段EF的中点.用向量方法证明与解答:
(1)求证:AM∥平面BDE;
(2)试判断在线段AC上是否存在一点P,使得直线PF与AD所成角为60°,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知f(x)=$\left\{\begin{array}{l}(2a-1)x+3a,x<1\\{a^x},x≥1\end{array}$满足对任意x1≠x2都有$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}$<0成立,那么a的取值范围是(  )
A.(0,1)B.$(0,\frac{1}{2})$C.$[\frac{1}{4},\frac{1}{2})$D.$[\frac{1}{4},1)$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知圆(x-1)2+(y+1)2=16的一条直径恰好经过直线x-2y+3=0被圆所截弦的中点,则该直径所在直线的方程为2x+y-1=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知数列{an}满足a1=1,an+1=$\frac{1}{2{a}_{n}+1}$(n∈N*).
(1)证明:数列{|an-$\frac{1}{2}$|}为单调递减数列;
(2)记Sn为数列{|an+1-an|}的前n项和,证明:Sn<$\frac{5}{3}$(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.根据如图所示的算法语句,可知输出的结果S是(  )
A.11B.9C.7D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数$f(x)=2sin?xcos?x-2\sqrt{3}{cos^2}?x+\sqrt{3}({?>0})$,若函数f(x)的图象与直线y=a(a为常数)相切,并且切点的横坐标依次成公差为π的等差数列.
(1)求f(x)的表达式及a的值;
(2)将函数f(x)的图象向左平移$\frac{π}{3}$个单位,再向上平移1个单位,得到函数y=g(x),求其单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若cos2θ+2msinθ-2m-2<0对θ∈R恒成立,则实数m的取值范围是(  )
A.m<1-$\sqrt{2}$B.m>1-$\sqrt{2}$C.1-$\sqrt{2}$<m<1+$\sqrt{2}$D.1-$\sqrt{2}$<m≤1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在平面直角坐标系xOy中,已知圆C1:(x+3)2+(y-1)2=4和圆C2:(x-4)2+(y-5)2=1.
(I)若直线l过点 A(4,0),且被圆C1截得的弦长为2$\sqrt{3}$,求直线l的方程;
(II)若从圆C1的圆心发出一束光线经直线x-y-3=0反射后,反射线与圆C2有公共点,试求反射线所在直线的斜率的范围.

查看答案和解析>>

同步练习册答案