精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(1)若,且内有且只有一个零点,求的值;

(2)若,且有三个不同零点,问是否存在实数使得这三个零点成等差数列?若存在,求出的值,若不存在,请说明理由.

【答案】(1);(2)存在,.

【解析】

1)求出导函数,根据导函数的正负分布求解函数单调性,再根据内有且只有一个零点,求得的值;

2)若有三个不同零点,且成等差数列,可设利用待定系数法求解参数的取值.

(1)若,则.

,则函数上单调递增,则

无零点;

,令,得.

上,单调递减,

上,单调递增.

内有且只有一个零点,则

,得,得.

(2)因为,则,若有三个不同零点,且成等差数列,

可设

,

,则,故.此时,,故存在三个不同的零点,故符合题意的的值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列说法正确的是(

A.某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法从该校四个年级的本科生中抽取一个容量为300的样本进行调查.已知该校一、二、三、四年级本科生人数之比为6554,则应从一年级中抽取90名学生

B.10件产品中有7件正品,3件次品,从中任取4件,则恰好取到1件次品的概率为

C.已知变量xy正相关,且由观测数据算得=3=35,则由该观测数据算得的线性回归方程可能是=0.4x+2.3

D.从装有2个红球和2个黑球的口袋内任取2个球,至少有一个黑球与至少有一个红球是两个互斥而不对立的事件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设各项均为正数的数列的前n项和为,已知,且,对一切都成立.

1)当时,证明数列是常数列,并求数列的通项公式;

2)是否存在实数,使数列是等差数列?若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,是圆O的直径,点C是圆O上异于AB的点,直线平面EF分别是的中点.

1)记平面与平面的交线为l,试判断直线l与平面的位置关系,并加以证明;

2)设,求二面角大小的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系.以坐标原点为极点,轴正半轴为极轴建立极坐标系,已知曲线的极坐标方程为,点上的动点,的中点.

1)请求出点轨迹的直角坐标方程;

2)设点的极坐标为若直线经过点且与曲线交于点,弦的中点为,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱中,,分别是,的中点.

1)求证:平面

2)求证:平面平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为为坐标原点,过点的直线交于两点.

1)若直线与圆相切,求直线的方程;

2)若直线轴的交点为,且,试探究:是否为定值.若为定值,求出该定值,若不为定值,试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系.以坐标原点为极点,轴正半轴为极轴建立极坐标系,已知曲线的极坐标方程为,点上的动点,的中点.

1)请求出点轨迹的直角坐标方程;

2)设点的极坐标为若直线经过点且与曲线交于点,弦的中点为,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】农历五月初五是端午节,民间有吃粽子的习惯,粽子又称粽籺,俗称粽子,古称角黍,是端午节大家都会品尝的食品,传说这是为了纪念战国时期的楚国大臣、爱国主义诗人屈原.如图,平行四边形形状的纸片是由六个边长为2的正三角形组成的,将它沿虚线对折起来,可以得到如图所示粽子形状的六面体,则该六面体的体积为______________

查看答案和解析>>

同步练习册答案