精英家教网 > 高中数学 > 题目详情
(本小题满分13分)已知椭圆:的右焦点为,离心率为.
(Ⅰ)求椭圆的方程及左顶点的坐标;
(Ⅱ)设过点的直线交椭圆两点,若的面积为,求直线的方程.
(19)(本小题满分13分)
解:(Ⅰ)由题意可知:,所以.     
所以.                   
所以椭圆的标准方程为,左顶点的坐标是.     
………………………………4分
(Ⅱ)根据题意可设直线的方程为.
可得:.
所以.
……………………………………7分
所以的面积
……………………………………9分
.
………………………………………10分
因为的面积为
所以.
,则.
解得(舍),.
所以.                      
所以直线的方程为.
……………………………………13分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆的中心在原点,它的左右两个焦点分别为,过右焦点且与轴垂直的直线与椭圆相交,其中一个交点为
(1) 求椭圆的方程。
(2)设椭圆的一个顶点为直线交椭圆于另一点,求的面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若方程x2+ky2=2表示焦点在x轴上的椭圆,则实数k的取值范围为(   )     
A.(0,+∞)B.(0,2)C.(1,+∞)D.(0,1)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设椭圆的左、右焦点分别为 ,是椭圆上位于轴上方的动点 (Ⅰ)当取最小值时,求点的坐标;
(Ⅱ)在(Ⅰ)的情形下,是否存在以为直角顶点的内接于椭圆的等腰直角三角形?若存在,求出共有几个;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

椭圆的离心率为,右焦点到直线的距离为,过的直线交椭圆于两点.
(Ⅰ) 求椭圆的方程;
(Ⅱ) 若直线轴于,,求直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆的焦点为在椭圆上,则椭圆的方程为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆的方程为,过椭圆的右焦点且与x轴垂直的直线与椭圆交于P、Q两点,椭圆的右准线与x轴交于点M,若为正三角形,则椭圆的离心率等于  ▲   

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆的方程为,它的两个焦点为F1、F2,若| F1F2|=8, 弦AB过F1 ,则△ABF2的周长为    ▲    

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

.如右上图:设椭圆的左,右两个焦点分别为,短轴的上端点为,短轴上的两个三等分点为,且为正方形,若过点作此正方形的外接圆的切线在轴上的一个截距为,则此椭圆方程的方程为   ▲   

查看答案和解析>>

同步练习册答案