精英家教网 > 高中数学 > 题目详情

【题目】某校高三年级举行了一次全年级的大型考试,在数学成绩优秀和非优秀的学生中,物理、化学、总分成绩也为优秀的人数如下表所示,则我们能以99%的把握认为数学成绩优秀与物理、化学、总分成绩优秀有关系吗?

物理优秀

化学优秀

总分优秀

数学优秀

228

225

267

数学非优秀

143

156

99

:该年级此次考试中数学成绩优秀的有360,非优秀的有880.

【答案】见解析

【解析】分析:利用独立性检验分别计算,再判断我们是否能以99%的把握认为数学成绩优秀与物理、化学、总分成绩优秀有关系.

详解:(1)根据已知数据列出数学与物理成绩的2×2列联表如下表所示:

物理优秀

物理非优秀

合计

数学优秀

228

b

360

数学非优秀

143

d

880

合计

371

b+d

1 240

b=360-228=132,d=880-143=737,b+d=132+737=869.代入公式可得

270.114.

(2)按照上述方法列出数学与化学成绩的2×2列联表如下表所示:

化学优秀

化学非优秀

合计

数学优秀

225

135

360

数学非优秀

156

724

880

合计

381

859

1 240

代入公式可得

240.611.

(3)列出数学与总分成绩的2×2列联表如下表所示:

总分优秀

总分非优秀

合计

数学优秀

267

93

360

数学非优秀

99

781

880

合计

366

874

1 240

代入公式可得486.123.

由于计算出的χ2的观测值都大于6.635,因此说明有99%的把握认为数学成绩优秀与物理、化学、总分成绩优秀有关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆C1 +y2=1,椭圆C2以C1的长轴为短轴,且与C1有相同的离心率.
(1)求椭圆C2的方程;
(2)设O为坐标原点,点A,B分别在椭圆C1和C2上, =2 ,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从甲、乙两名学生中选拔一人参加射箭比赛,为此需要对他们的射箭水平进行测试.现这两名学生在相同条件下各射箭10次,命中的环数如下:

8

9

7

9

7

6

10

10

8

6

10

9

8

6

8

7

9

7

8

8

(1)计算甲、乙两人射箭命中环数的平均数和标准差;

(2)比较两个人的成绩,然后决定选择哪名学生参加射箭比赛.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下图中的几何体是由两个有共同底面的圆锥组成.已知两个圆锥的顶点分别为PQ,高分别为21,底面半径为1A为底面圆周上的定点,B为底面圆周上的动点(不与A重合).下列四个结论:

①三棱锥体积的最大值为

直线PB与平面PAQ所成角的最大值为

当直线BQAP所成角最小时,其正弦值为

④直线BQAP所成角的最大值为

其中正确的结论有___________.(写出所有正确结论的编号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】三棱柱ABC﹣A1B1C1中,底面边长和侧棱长都相等,∠BAA1=∠CAA1=60°,则异面直线AB1与BC1所成角的余弦值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,定义域为上的函数是由一条射线及抛物线的一部分组成.利用该图提供的信息解决下面几个问题.

1)求的解析式;

2)若关于的方程有三个不同解,求的取值范围;

3)若,求的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】12分)已知函数fx=

1)判断函数在区间[1,+∞)上的单调性,并用定义证明你的结论.

2)求该函数在区间[1,4]上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数. 为实数,且,记由所有组成的数集为.

1)已知,求

2)对任意的恒成立,求的取值范围;

3)若,判断数集中是否存在最大的项?若存在,求出最大项;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三点O(0,0),A(﹣2,1),B(2,1),曲线C上任意一点M(x,y)满足| + |= + )+2.
(1)求曲线C的方程;
(2)动点Q(x0 , y0)(﹣2<x0<2)在曲线C上,曲线C在点Q处的切线为直线l:是否存在定点P(0,t)(t<0),使得l与PA,PB都相交,交点分别为D,E,且△QAB与△PDE的面积之比是常数?若存在,求t的值.若不存在,说明理由.

查看答案和解析>>

同步练习册答案