分析 (1)由f(x)是定义域为R的奇函数,从而可以得到$\left\{\begin{array}{l}{f(0)=0}\\{f(-1)=-f(1)}\end{array}\right.$,带入解析式便可解出a=2,b=1;
(2)先分离常数得到$f(x)=-\frac{1}{2}+\frac{1}{{2}^{x}+1}$,可根据单调性的定义判断该函数的单调性,
(3)根据函数奇偶性和单调性的关系将不等式进行转化求解即可.
解答 解:(1)f(x)是定义在R上的奇函数;
∴f(0)=0,且f(-1)=-f(1);
∴$\left\{\begin{array}{l}{\frac{-1+b}{2+a}=0}\\{\frac{-\frac{1}{2}+b}{1+a}=-\frac{-2+b}{4+a}}\end{array}\right.$;
解得b=1,a=2;
即$f(x)=\frac{1-{2}^{x}}{{2}^{x+1}+2}$;
(2)f(x)在R上单调递减.
$f(x)=\frac{1-{2}^{x}}{{2}^{x+1}+2}=\frac{-({2}^{x}+1)+2}{2({2}^{x}+1)}$=$-\frac{1}{2}+\frac{1}{{2}^{x}+1}$;
设x1,x2∈R,且x1<x2,则:
$f({x}_{1})-f({x}_{2})=\frac{1}{{2}^{{x}_{1}}+1}-\frac{1}{{2}^{{x}_{2}}+1}$=$\frac{{2}^{{x}_{2}}-{2}^{{x}_{1}}}{({2}^{{x}_{1}}+1)({2}^{{x}_{2}}+1)}$;
∵x1<x2;
∴${2}^{{x}_{1}}<{2}^{{x}_{2}}$;
∴${2}^{{x}_{2}}-{2}^{{x}_{1}}>0$;
又${2}^{{x}_{1}}+1>0,{2}^{{x}_{2}}+1>0$;
∴f(x1)>f(x2);
∴f(x)在R上单调递减.
(3)若对任意的t∈(1,4),不等式$f(4-k\sqrt{t})+f(t)>0$恒成立,
即f(t)>-f(4-k$\sqrt{t}$),
∵函数f(x)是奇函数,
∴f(t)>-f(4-k$\sqrt{t}$)=f(k$\sqrt{t}$-4),
∵函数f(x)为减函数,
∴t<k$\sqrt{t}$-4,
即k$\sqrt{t}$>4+t,
则k>$\frac{4+t}{\sqrt{t}}$=$\frac{4}{\sqrt{t}}$+$\sqrt{t}$,
∵t∈(1,4),∴$\sqrt{t}$∈(1,2),
设x=$\sqrt{t}$,
则x∈(1,2),
则g(x)=x+$\frac{4}{x}$在(1,2)上为减函数,
则g(2)<g(x)<g(1),
即4<g(x)<5,即k≥5.
点评 本题主要考查函数奇偶性的应用以及函数单调性的判断,利用参数分离法结合函数单调性的性质是解决本题的关键.
科目:高中数学 来源: 题型:选择题
A. | 4 | B. | 5 | C. | 6 | D. | 7 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | [-1,0] | B. | {-1,1} | C. | {-1,0,1} | D. | [-1,1] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 若两条平行直线中的一条平行于这个平面,则另一条也平行于这个平面 | |
B. | 若直线a不平行于平面α,则α内一定不存在与a平行的直线 | |
C. | 如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面β | |
D. | 若三角形ABC在平面α外,则边AB、BC、AC与面α的交点可能不在同一直线上 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | y=(x-1)2 | B. | f(x)=2-x | C. | y=log0.5(x+1) | D. | $y=\sqrt{x+1}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com