精英家教网 > 高中数学 > 题目详情
10.已知定义域为R的函数f(x)=$\frac{{-{2^x}+b}}{{{2^{x+1}}+a}}$是奇函数.
(1)求实数a,b的值;
(2)判断函数f(x)的单调性,并说明理由;
(3)若对任意的t∈(1,4),不等式$f(4-k\sqrt{t})+f(t)>0$恒成立,求实数k的取值范围.

分析 (1)由f(x)是定义域为R的奇函数,从而可以得到$\left\{\begin{array}{l}{f(0)=0}\\{f(-1)=-f(1)}\end{array}\right.$,带入解析式便可解出a=2,b=1;
(2)先分离常数得到$f(x)=-\frac{1}{2}+\frac{1}{{2}^{x}+1}$,可根据单调性的定义判断该函数的单调性,
(3)根据函数奇偶性和单调性的关系将不等式进行转化求解即可.

解答 解:(1)f(x)是定义在R上的奇函数;
∴f(0)=0,且f(-1)=-f(1);
∴$\left\{\begin{array}{l}{\frac{-1+b}{2+a}=0}\\{\frac{-\frac{1}{2}+b}{1+a}=-\frac{-2+b}{4+a}}\end{array}\right.$;
解得b=1,a=2;
即$f(x)=\frac{1-{2}^{x}}{{2}^{x+1}+2}$;
(2)f(x)在R上单调递减.
$f(x)=\frac{1-{2}^{x}}{{2}^{x+1}+2}=\frac{-({2}^{x}+1)+2}{2({2}^{x}+1)}$=$-\frac{1}{2}+\frac{1}{{2}^{x}+1}$;
设x1,x2∈R,且x1<x2,则:
$f({x}_{1})-f({x}_{2})=\frac{1}{{2}^{{x}_{1}}+1}-\frac{1}{{2}^{{x}_{2}}+1}$=$\frac{{2}^{{x}_{2}}-{2}^{{x}_{1}}}{({2}^{{x}_{1}}+1)({2}^{{x}_{2}}+1)}$;
∵x1<x2
∴${2}^{{x}_{1}}<{2}^{{x}_{2}}$;
∴${2}^{{x}_{2}}-{2}^{{x}_{1}}>0$;
又${2}^{{x}_{1}}+1>0,{2}^{{x}_{2}}+1>0$;
∴f(x1)>f(x2);
∴f(x)在R上单调递减.
(3)若对任意的t∈(1,4),不等式$f(4-k\sqrt{t})+f(t)>0$恒成立,
即f(t)>-f(4-k$\sqrt{t}$),
∵函数f(x)是奇函数,
∴f(t)>-f(4-k$\sqrt{t}$)=f(k$\sqrt{t}$-4),
∵函数f(x)为减函数,
∴t<k$\sqrt{t}$-4,
即k$\sqrt{t}$>4+t,
则k>$\frac{4+t}{\sqrt{t}}$=$\frac{4}{\sqrt{t}}$+$\sqrt{t}$,
∵t∈(1,4),∴$\sqrt{t}$∈(1,2),
设x=$\sqrt{t}$,
则x∈(1,2),
则g(x)=x+$\frac{4}{x}$在(1,2)上为减函数,
则g(2)<g(x)<g(1),
即4<g(x)<5,即k≥5.

点评 本题主要考查函数奇偶性的应用以及函数单调性的判断,利用参数分离法结合函数单调性的性质是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.正三棱柱ABC-A1B1C1的各棱长都为2,E,F分别为AB、A1C1的中点,则EF的长是$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知两个等差数列{an}和{bn}的前n项和分别为Sn和Tn,且$\frac{S_n}{T_n}=\frac{2n+30}{n+3}$,则使$\frac{{a}_{n}}{{b}_{n}}$为整数的n值个数为(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知全集U=R,A={x|x2-7x+10≤0},B={x|x-x2+6<0},求:
(1)A∩B   
(2)∁R(A∪B)    
(3)(∁RA)∪B.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知$f(x)=\frac{2^x}{{1+{2^x}}}-\frac{1}{2}$,若[x]是不超过x的最大整数,则函数y=[f(x)]-[f(-x)]的值域为(  )
A.[-1,0]B.{-1,1}C.{-1,0,1}D.[-1,1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.下列命题中,判断正确的为(  )
A.若两条平行直线中的一条平行于这个平面,则另一条也平行于这个平面
B.若直线a不平行于平面α,则α内一定不存在与a平行的直线
C.如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面β
D.若三角形ABC在平面α外,则边AB、BC、AC与面α的交点可能不在同一直线上

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列函数中,在区间(0,+∞)上为增函数的是(  )
A.y=(x-1)2B.f(x)=2-xC.y=log0.5(x+1)D.$y=\sqrt{x+1}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.直线y=1-x交椭圆mx2+ny2=1(m>0,n>0,且m≠n)于M、N两点,弦MN的中点为P,O为坐标原点,若直线OP的斜率为$\frac{1}{2}$,且以MN为直径的圆经过坐标原点,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知非空集合A={x|1-m≤x≤2m-1},B={x|-2<x≤5},若A∩B=A,求实数m的取值范围.

查看答案和解析>>

同步练习册答案