精英家教网 > 高中数学 > 题目详情

【题目】设函数f(x)=sin(2x+ )+ cos(2x+ ),则(
A.y=f(x)在(0, )单调递增,其图象关于直线x= 对称
B.y=f(x)在(0, )单调递增,其图象关于直线x= 对称
C.y=f(x)在(0, )单调递减,其图象关于直线x= 对称
D.y=f(x)在(0, )单调递减,其图象关于直线x= 对称

【答案】D
【解析】解:函数f(x)=sin(2x+ )+ cos(2x+ ), 化简可得:f(x)=sin(2x+ + )=cos2x.
根据余弦函数的图象和性质,2kπ≤2x≤2kπ+π,
可得:
∴递减区间为[kπ, ],k∈Z.
∵对称轴方程2x=kπ,k∈Z.
∴函数的对称轴方程为x= ,k∈Z.
故选D
利用辅助角公式基本公式将函数化为y=Asin(ωx+φ)的形式,将内层函数看作整体,放到正弦函数的增减区间上,解不等式得函数的单调区间;根据对称轴方程求解对称即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在公差不为零的等差数列{an}和等比数列{bn}中.已知a1=b1=1.a2=b2 . a6=b3
(1)求等差数列{an}的通项公式an和等比数列{bn}的通项公式bn
(2)求数列{anbn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知不等式组 表示的平面区域为D,若(x,y)∈D,|x|+2y≤a为真命题,则实数a的取值范围是(
A.[10,+∞)
B.[11,+∞)
C.[13,+∞)
D.[14,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C所对的边分别为a,b,c,且a2+c2=b2﹣ac.
(1)求B的大小;
(2)设∠BAC的平分线AD交BC于D,AD=2 ,BD=1,求cosC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知甲、乙两煤矿每年的产量分别为200万吨和260万吨,需经过东车站和西车站两个车站运往外地.东车站每年最多能运280万吨煤,西车站毎年最多能运360万吨煤,甲煤矿运往东车站和西车站的运费价格分别为1元/t和1.5元/t,乙煤矿运往东车站和西车站的运费价格分别为0.8元/t和1.6元/t.煤矿应怎样编制调运方案,能使总运费最少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】小王为了锻炼身体,每天坚持“健步走”,并用计步器进行统计.小王最近8天“健步走”步数的频数分布直方图(图1)及相应的消耗能量数据表(表1)如下:

健步走步数(前步)

16

17

18

19

消耗能量(卡路里)

400

440

480

520

(Ⅰ)求小王这8天“健步走”步数的平均数;
(Ⅱ)从步数为17千步,18千步,19千步的几天中任选2天,求小王这2天通过“健步走”消耗的能量和不小于1000卡路里的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题: ①“若a2<b2 , 则a<b”的否命题;
②“全等三角形面积相等”的逆命题;
③“若a>1,则ax2﹣2ax+a+3>0的解集为R”的逆否命题;
④“若 x(x≠0)为有理数,则x为无理数”的逆否命题.
其中正确的命题是(
A.③④
B.①③
C.①②
D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】点O是平面上一定点,A、B、C是平面上△ABC的三个顶点,∠B、∠C分别是边AC、AB的对角,以下命题正确的是(把你认为正确的序号全部写上). ①动点P满足 = + + ,则△ABC的重心一定在满足条件的P点集合中;
②动点P满足 = +λ( + )(λ>0),则△ABC的内心一定在满足条件的P点集合中;
③动点P满足 = +λ( + )(λ>0),则△ABC的重心一定在满足条件的P点集合中;
④动点P满足 = +λ( + )(λ>0),则△ABC的垂心一定在满足条件的P点集合中;
⑤动点P满足 = +λ( + )(λ>0),则△ABC的外心一定在满足条件的P点集合中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an}的前n项和为Sn , 已知S2=4,an+1=2Sn+1,n∈N*
(1)求通项公式an
(2)求数列{|an﹣n﹣2|}的前n项和.

查看答案和解析>>

同步练习册答案