精英家教网 > 高中数学 > 题目详情
18.已知△ABC为圆x2+y2=4的一个内接三角形,且$\widehat{AB}$:$\widehat{BC}$:$\widehat{CA}$=1:3:5,则BC中点M的轨迹方程为x2+y2=1.

分析 求得圆心(0,0)到BC的距离,可得BC的中点的轨迹是以原点为圆心,以1为半径的圆,从而写出圆的标准方程,即为所求.

解答 解:$\widehat{AB}$:$\widehat{BC}$:$\widehat{CA}$=1:3:5,∴∠BOC=120°,
∴圆心(0,0)到BC的距离为1,
即BC的中点到圆心(0,0)的距离等于4,BC的中点的轨迹是以原点为圆心,以1为半径的圆,
故BC的中点的轨迹方程是x2+y2=1,
故答案为:x2+y2=1.

点评 本题考查求点的轨迹方程的方法,判断BC的中点的轨迹是以原点为圆心,以1为半径的圆,是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.设函数f(x)=x2-alnx,g(x)=x2-x.若x∈(1,+∞),恒有函数f(x)的图象位于g(x)图象的上方,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知递减的等比数列{an}中,a2,a3是方程32x2-12x+1=0的两根,数列{bn}的前n项和Tn=$\frac{1}{2}$n2+$\frac{k}{2}$n(n∈N*,k>0),且Tn的最小值为1.
(1)求数列{an}和{bn}的通项公式;
(2)求数列{an•bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=ex,g(x)=ax+1(a是不为零的常数且a∈R).
(1)讨论函数F(x)=f(x)•g(x)的单调性;
(2)当a=-1时,方程f(x)•g(x)=t在区间[-1,1]上有两个根,求实数t的取值范围;
(3)是否存在正整数N,使得当n∈N+且n>N时,不等式f(-1)+f(-$\frac{1}{2}$)+f(-$\frac{1}{3}$)+…+f(-$\frac{1}{n}$)<n-2011恒成立,若存在,找出一个满足条件的N,并证明;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知关于x的不等式ax2-3x+2>0,a为实数.
(1)若不等式ax2-3x+2>0的解集为{x|x<1或x>b},求a,b的值;
(2)求不等式ax2-3x+2>5-ax的解.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知△ABC,周长l=18,ab=24,C=60°,求a,b边的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知△ABC的顶点A(0,1),边上的中线CD所在直线的方程为2x-2y-1=0,AC边上的高BH所在直线的方程为y=0,求△ABC的三边所在的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.(x-y)(x+y)8的展开式中x7y2的系数为20(用数字填写答案)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知数列{an},满足a1=$\frac{1}{3}$,an+1=an•3n(n∈N*),则数列{an}的通项公式为(  )
A.an=3${\;}^{\frac{{a}^{2}-2n}{2}}$B.an=3${\;}^{\frac{{n}^{2}-2n-2}{2}}$C.an=3${\;}^{\frac{{n}^{2}-n-2}{2}}$D.an=3${\;}^{\frac{{2}_{n}-{n}^{2}}{2}}$

查看答案和解析>>

同步练习册答案