精英家教网 > 高中数学 > 题目详情
如图,正方形所在平面与平面四边形所在平面互相垂直,△是等腰直角三角形,

(1)线段的中点为,线段的中点为,求证:
(2)求直线与平面所成角的正切值.
(1)根据面面平行的性质定理,//面,可知结论。(2)

试题分析:(1)取的中点为,连,,则,
//面,            ………………………5分
(2)先证出,                         ………………………8分
为直线与平面所成角,            ………………………11分
                             ………………………14分
点评:对于平行的证明,主要是根据线面位置关系中平行的判定定理来得到,那么对于线面角的求解,关键是作出平面的垂线来证明,考查了分析问题的能力。中档题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

如图,在正四棱柱中,分别是的中点,则以下结论中不成立的是(   )
A.垂直B.垂直
C.异面D.异面

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知四棱锥的底面为菱形,且
,的中点.

(Ⅰ)求证:平面
(Ⅱ)求点到面的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知是两条不同的直线,是两个不重合的平面,给出下列命题:
①若,则           ②若 ;      
③若 ;   ④若;   
其中正确命题的个数为                   (      )                                                  
A.1个    B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,四棱锥中,底面是边长为2的正方形,,且,中点.

(1)求证:平面
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在三棱锥P-ABC中,PA⊥平面ABC,∠BAC=90°,D、E、F分别是棱AB、BC、CP的中点,AB=AC=1,PA=2,则直线PA与平面DEF所成角的正弦值为(  )
A.              B.             C.             D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)
如图,在四棱锥中,底面是正方形.已知.

(Ⅰ)求证:
(Ⅱ)求四棱锥的体积

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设α,β为不重合的平面,m,n为不重合的直线,则下列命题正确的是(      )
A.若mα,nβ,m∥n,则α∥β
B.若n⊥α,n⊥β,m⊥β,则m⊥α
C.若m∥α,n∥β,m⊥n,则α⊥β
D.若α⊥β,n⊥β,m⊥n,则m⊥α

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图所示,四棱锥P-ABCD的底面ABCD是边长为1的菱形,BCD=60,E是CD的中点,PA底面ABCD,PA=2.

(1)证明:平面PBE平面PAB;
(2)求平面PAD和平面PBE所成二面角的正弦值。

查看答案和解析>>

同步练习册答案