精英家教网 > 高中数学 > 题目详情
6.已知$sin({\frac{π}{4}-α})=\frac{5}{13},α∈(0,\frac{π}{4})$,则$\frac{cos2α}{{cos({\frac{π}{4}+α})}}$的值为(  )
A.$\frac{24}{13}$B.$-\frac{24}{13}$C.$\frac{10}{13}$D.$-\frac{10}{13}$

分析 由已知结合角α的范围求得cos($\frac{π}{4}+α$),cos($\frac{π}{4}-α$),进一步由诱导公式及倍角公式求出cos2α,则答案可求.

解答 解:∵$sin({\frac{π}{4}-α})=\frac{5}{13},α∈(0,\frac{π}{4})$,
∴cos($\frac{π}{4}+α$)=$\frac{5}{13}$,cos($\frac{π}{4}-α$)=$\frac{12}{13}$.
cos2α=sin($\frac{π}{2}-2α$)=2sin($\frac{π}{4}-α$)cos($\frac{π}{4}-α$)=$2×\frac{5}{13}×\frac{12}{13}=\frac{120}{169}$.
∴$\frac{cos2α}{{cos({\frac{π}{4}+α})}}$=$\frac{\frac{120}{169}}{\frac{12}{13}}=\frac{10}{13}$.
故选:C.

点评 本题考查两角和与差的正弦,考查了倍角公式的应用,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.实数a,b∈R,i是虚数单位,若a+2i与2-bi互为共轭复数,则a+b=4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某种产品的广告费支出x与销售额(单位:百万元)之间有如下对应数据:
x24568
y3040506070
如果y与x之间具有线性相关关系.
(1)求这些数据的线性回归方程;
(2)预测当广告费支出为9百万元时的销售额.
附:线性回归方程$\widehaty=\widehatbx+\widehata$中,$\widehatb=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}$,$\widehata=\overline y-\widehatb\overline x$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)=ex-1,g(x)=-x2+4x-3,若f(a)=g(b),则b的取值范围是(  )
A.$[2-\sqrt{2},2+\sqrt{2}]$B.$(2-\sqrt{2},2+\sqrt{2})$C.[1,3]D.(1,3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在△ABC中,a,b,c分别是角A、B、C的对边,且$\sqrt{3}$acosB+bsinA=0.
(I)求角B的大小;
(Ⅱ)若△ABC的面积S=$\sqrt{3}$,a=1,求b.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在复平面内,复数z=$\frac{3i}{-1+2i}$的共轭复数的虚部为(  )
A.$\frac{3}{5}i$B.$-\frac{3}{5}i$C.$-\frac{3}{5}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.向量$\overrightarrow{a}$、$\overrightarrow{b}$的夹角为60°,且|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2,则|2$\overrightarrow{a}$-$\overrightarrow{b}$|=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=-(x-2m)(x+m+3)(其中m<-1),g(x)=2x-2.
(Ⅰ)若命题“log2g(x)<1”是真命题,求x的取值范围;
(Ⅱ)设命题p:?x∈(1,+∞),f(x)<0或g(x)<0;命题q:?x∈(-1,0),f(x)•g(x)<0.若p∧q是真命题,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知$\sqrt{{a}^{2}-4a+4}$=2-a,函数f(x)=$\frac{1}{{3}^{x}}$-3x,x∈R
(1)求f(a)的取值范围;
(2)若f(ea-m)+f(ea-1)≥0恒成立,求实数m的最小值.

查看答案和解析>>

同步练习册答案