精英家教网 > 高中数学 > 题目详情

【题目】如图,边长为2的等边△PCD所在的平面垂直于矩形ABCD所在的平面,BC=,M为BC的中点.

(I)证明:AM⊥PM ;

(II)求二面角P-AM-D的大小.

【答案】(1)见解析; (2)45°.

【解析】

(Ⅰ)以D点为原点,分别以直线DADCx轴、y轴,建立如图所示的空间直角坐标系,求出的坐标,利用数量积为零,即可证得结果;(Ⅱ)求出平面PAM与平面ABCD的法向量,代入公式即可得到结果.

(I)证明:D点为原点,分别以直线DADCx轴、y轴,建立如图所示的空间直角坐标系,依题意,可得

,∴AMPM .

(II),且平面PAM,则

, ,

,得;取,显然平面ABCD

,结合图形可知,二面角PAMD45°.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设有关于的一元二次方程

)若是从四个数中任取的一个数,是从三个数中任取的一个数,求上述方程有实根的概率.

)若是从区间任取的一个数,是从区间任取的一个数,求上述方程有实根的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】的图像与y轴交点的纵坐标为1,在y轴右侧的第一个最大值和最小值分别为.

1)求函数的解析式:

2)将函数图像上所有点的横坐标缩小原来的(纵坐标不变),再将所得图像沿x轴正方向平移个单位,得到函数的图像,求函数的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知角α=45°,

(1)在-720°~0°范围内找出所有与角α终边相同的角β

(2)设集合,判断两集合的关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,对任意,有成立.

1)求的通项公式;

2)设是数列的前项和,求正整数,使得对任意恒成立;

3)设是数列的前项和,若对任意均有恒成立,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4—4:坐标系与参数方程

已知曲线的参数方程为为参数),以平面直角坐标系的原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为

(Ⅰ)求曲线的直角坐标方程及曲线上的动点到坐标原点的距离的最大值;

(Ⅱ)若曲线与曲线相交于两点,且与轴相交于点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥P-ABC中,PA⊥底面ABC .点DEN分别为棱PA,PCBC的中点,M是线段AD的中点,PA=AC=4,AB=2.

(Ⅰ)求证:MN∥平面BDE

(Ⅱ)求二面角C-EM-N的正弦值;

(Ⅲ)已知点H在棱PA上,且直线NH与直线BE所成角的余弦值为,求线段AH的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某同学用五点法画函数在某一个周期内的图象时,列表并填入了部分数据,如下表:

0

π

2π

x

0

4

-4

0

1)请将上表数据补充完整,填写在答题卡上相应位置,并直接写出函数fx)的解析式;

2)将图象上所有点向左平行移动θ)个单位长度,得到的图象.图象的一个对称中心为,求θ的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,直线l的参数方程为t是参数),在以坐标原点为极点,x轴的正半轴为极轴的极坐标系中,曲线C的极坐标方程为

(Ⅰ)写出直线l的普通方程、曲线C的参数方程;

(Ⅱ)过曲线C上任意一点A作与直线l的夹角为45°的直线,设该直线与直线l交于点B,求的最值.

查看答案和解析>>

同步练习册答案