精英家教网 > 高中数学 > 题目详情
(2012•泉州模拟)某工厂欲加工一件艺术品,需要用到三棱锥形状的坯材,工人将如图所示的长方体ABCD-EFGH材料切割成三棱锥H-ACF.

(Ⅰ)若点M,N,K分别是棱HA,HC,HF的中点,点G是NK上的任意一点,求证:MG∥平面ACF;
(Ⅱ)已知原长方体材料中,AB=2m,AD=3m,DH=1m,根据艺术品加工需要,工程师必须求出该三棱锥的高.
(i) 甲工程师先求出AH所在直线与平面ACF所成的角θ,再根据公式h=AH•sinθ求出三棱锥H-ACF的高.请你根据甲工程师的思路,求该三棱锥的高.
(ii)乙工程师设计了一个求三棱锥的高度的程序,其框图如图所示,则运行该程序时乙工程师应输入的t的值是多少?(请直接写出t的值,不要求写出演算或推证的过程).
分析:(Ⅰ)证法一:利用线面平行的判定证明MK∥平面ACF,MN∥平面ACF,从而可得平面MNK∥平面ACF,利用面面平行的性质可得MG∥平面ACF;证法二:利用线面平行的判定证明MG∥平面ACF;
(Ⅱ)(i)建立空间直角坐标系,求出平面ACF的一个法向量
n
=(2,3,-6)
,求出AH所在直线与平面ACF所成的角θ,再根据公式h=AH•sinθ求出三棱锥H-ACF的高
(ii)t=2.
解答:(Ⅰ)证法一:∵HM=MA,HN=NC,HK=KF,
∴MK∥AF,MN∥AC.∵MK?平面ACF,AF?平面ACF,
∴MK∥平面ACF,
同理可证MN∥平面ACF,…(3分)
∵MN,MK?平面MNK,且MK∩MN=M,
∴平面MNK∥平面ACF,…(4分)
又MG?平面MNK,故MG∥平面ACF.…(5分)
证法二:连HG并延长交FC于T,连接AT.
∵HN=NC,HK=KF,
∴KN∥FC,则HG=GT,
又∵HM=MA,∴MG∥AT,…(2分)∵MG?平面ACF,AT?平面ACF,
∴MG∥平面ACF.…(5分)
(Ⅱ)解:(i)如图,分别以DA,DC,DH所在直线为x轴,y轴,z轴建立空间直角坐标系O-xyz.则有A(3,0,0),C(0,2,0),F(3,2,1),H(0,0,1).…(6分)
AC
=(-3,2,0),
AF
=(0,2,1)
AH
=(-3,0,1)

设平面ACF的一个法向量
n
=(x,y,z)

则有
n
AC
=-3x+2y=0
n
AF
=2y+z=0
,解得
x=
2
3
y
z=-2y

令y=3,则
n
=(2,3,-6)
,…(8分)
sinθ=|
AH
n
|
AH
||
n
|
|=
12
7•
10
=
6
10
35
,…(9分)
∴三棱锥H-ACF的高为AH•sinθ=
6
10
35
10
=
12
7
.…(10分)
(ii)t=2.…(13分)
点评:本小题主要考查直线与直线、直线与平面、平面与平面的位置关系和算法初步等基础知识,考查空间想象能力、推理论证能力及运算求解能力,考查化归与转化思想、数形结合思想、函数与方程思想及应用意识.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•泉州模拟)已知f0(x)=x•ex,f1(x)=f′0(x),f2(x)=f′1(x),…,fn(x)=f′n-1(x)(n∈N*).
(Ⅰ)请写出fn(x)的表达式(不需证明);
(Ⅱ)设fn(x)的极小值点为Pn(xn,yn),求yn
(Ⅲ)设gn(x)=-x2-2(n+1)x-8n+8,gn(x)的最大值为a,fn(x)的最小值为b,试求a-b的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•泉州模拟)下列函数中,既是偶函数,且在区间(0,+∞)内是单调递增的函数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•泉州模拟)已知集合A={1,2,3},B={x|x2-x-2=0,x∈R},则A∩B为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•泉州模拟)设函数f(x)=ax2+lnx.
(Ⅰ)当a=-1时,求函数y=f(x)的图象在点(1,f(1))处的切线方程;
(Ⅱ)已知a<0,若函数y=f(x)的图象总在直线y=-
12
的下方,求a的取值范围;
(Ⅲ)记f′(x)为函数f(x)的导函数.若a=1,试问:在区间[1,10]上是否存在k(k<100)个正数x1,x2,x3…xk,使得f′(x1)+f'(x2)+f′(x3)+…+f′(xk)≥2012成立?请证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•泉州模拟)设函数y=f(x)的定义域为D,若对于任意x1,x2∈D且x1+x2=2a,恒有f(x1)+f(x2)=2b,则称点(a,b)为函数y=f(x)图象的对称中心.研究并利用函数f(x)=x3-3x2-sin(πx)的对称中心,可得f(
1
2012
)+f(
2
2012
)+…+f(
4022
2012
)+f(
4023
2012
)
=(  )

查看答案和解析>>

同步练习册答案