精英家教网 > 高中数学 > 题目详情

【题目】已知曲线的参数方程为为参数),为曲线上的一动点.

(I)求动点对应的参数从变动到时,线段所扫过的图形面积;

(Ⅱ)若直线与曲线的另一个交点为,是否存在点,使得为线段的中点?若存在,求出点坐标;若不存在,说明理由.

【答案】(Ⅰ);(Ⅱ)存在点满足题意,且.

【解析】

(Ⅰ)先判断出线段所扫过的图形由一三角形和一弓形组成,然后通过分析图形的特征并结合扇形的面积可得所求.(Ⅱ)设,由题意得,然后根据点在曲线上求出后可得点的坐标.

(Ⅰ)设时对应的点为时对应的点为,由题意得轴,

则线段扫过的面积.

(Ⅱ)设

为线段的中点,

在曲线上,曲线的直角坐标方程为

整理得

∴存在点满足题意,且点的坐标为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的一个焦点与抛物线的焦点重合,且抛物线的准线被椭圆截得的弦长为1是直线上一点,过点且与垂直的直线交椭圆于两点.

1)求椭圆的标准方程;

2)设直线的斜率分别为,求证:成等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是椭圆的左焦点,O为坐标原点,为椭圆上的点.

1)求椭圆的标准方程;

2)若点都在椭圆上,且中点在线段(不包括端点)上,求面积的最大值,及此时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,平面的中点.

(Ⅰ)证明:平面平面

(Ⅱ)求异面直线所成角的余弦值;

(Ⅲ)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC的三边BCCAAB的中点分别是D(53)E(42)F(11).

1)求△ABC的边AB所在直线的方程及点A的坐标;

2)求△ABC的外接圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知互不重合的直线,互不重合的平面,给出下列四个命题,错误的命题是(

A.,则

B.,则

C.,则

D.,则

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校从高一年级学生中随机抽取名学生,将他们的期中考试数学成绩(满分分,成绩均为不低于分的整数)分成六段:,…,后得到如图的频率分布直方图.

(1)求图中实数的值;

(2)若从数学成绩在两个分数段内的学生中随机选取两名学生,求这两名学生的数学成绩之差的绝对值不大于的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4—4:坐标系与参数方程

平面直角坐标系xOy中,曲线C.直线l经过点Pm0),且倾斜角为O为极点,以x轴正半轴为极轴,建立极坐标系.

)写出曲线C的极坐标方程与直线l的参数方程;

)若直线l与曲线C相交于AB两点,且|PA·PB|=1,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆轴负半轴相交于点,与轴正半轴相交于点.

1)若过点的直线被圆截得的弦长为,求直线的方程;

2)若在以为圆心,半径为的圆上存在点,使得为坐标原点),求的取值范围.

查看答案和解析>>

同步练习册答案