精英家教网 > 高中数学 > 题目详情
如图,四面体ABCD中,E、F分别是AC、BD的中点,若CD=2AB=2,EF⊥AB,则EF与CD所成的角等于___________________________.

解析:取AD的中点G,连结EG、FG,易知EG=1,FG=.由EF⊥AB及GF∥AB知EF⊥FG.

在Rt△EFG中,求得∠GEF=30°,即为EF与CD所成的角.

答案:30°

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图四面体ABCD中,O,E分别是BD,BC的中点,CA=CB=CD=BD=2,AB=AD=
2

(1)求证:直线BD⊥平面AOC
(2)求点E到平面ACD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四面体ABCD中,O、E分别是BD、BC的中点,CA=CB=CD=BD=2,AB=AD=.

(1)求证:AO⊥平面BCD;

(2)求异面直线AB与CD所成角的大小;

(3)求点E到平面ACD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四面体ABCD中,O、E分别是BD、BC的中点,

CA=CB=CD=BD=2,AB=AD=.

(1)求证:AO⊥平面BCD;

(2)求异面直线AB与CD所成角的大小;

(3)求点E到平面ACD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四面体ABCD中,O、E分别是BD、BC的中点,CA=CB=CD=BD=2,AB=AD=.

(1)求证:AO⊥平面BCD;

(2)求异面直线AB与CD所成角的大小;

(3)求点E到平面ACD的距离.

查看答案和解析>>

同步练习册答案