精英家教网 > 高中数学 > 题目详情

写出求过两点p1(x1,y1),p2(x2,y2)的直线的斜率的算法,并画出流程图.

答案:
解析:

  解:算法如下:S1 输入x1,y1,x2,y2

  S2 如果x1=x2,输出“斜率不存在”,否则,k=

  S3 输出k.

  流程图:

  思路分析:由斜率公式k=知,当x1=x2时,斜率不存在,当x1≠x2时,根据公式可求得,因此也需要判断,使用选择结构.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•长宁区二模)设抛物线C:y2=2px(p>0)的焦点为F,过F且垂直于x轴的直线与抛物线交于P1,P2两点,已知|P1P2|=8.
(1)求抛物线C的方程;
(2)设m>0,过点M(m,0)作方向向量为
d
=(1,
3
)
的直线与抛物线C相交于A,B两点,求使∠AFB为钝角时实数m的取值范围;
(3)①对给定的定点M(3,0),过M作直线与抛物线C相交于A,B两点,问是否存在一条垂直于x轴的直线与以线段AB为直径的圆始终相切?若存在,请求出这条直线;若不存在,请说明理由.
②对M(m,0)(m>0),过M作直线与抛物线C相交于A,B两点,问是否存在一条垂直于x轴的直线与以线段AB为直径的圆始终相切?(只要求写出结论,不需用证明)

查看答案和解析>>

科目:高中数学 来源:上海市长宁区2012届高三4月教学质量检测(二模)数学理科试题 题型:044

设抛物线C:y2=2px(p>0)的焦点为F,过F且垂直于x轴的直线与抛物线交于P1,P2两点,已知|P1P2|=8.

(1)求抛物线C的方程;

(2)设m>0,过点M(m,0)作方向向量为=(1,)的直线与抛物线C相交于A,B两点,求使∠AFB为钝角时实数m的取值范围;

(3)①对给定的定点M(3,0),过M作直线与抛物线C相交于A,B两点,问是否存在一条垂直于x轴的直线与以线段AB为直径的圆始终相切?若存在,请求出这条直线;若不存在,请说明理由.

②对M(m,0)(m>0),过M作直线与抛物线C相交于A,B两点,问是否存在一条垂直于x轴的直线与以线段AB为直径的圆始终相切?(只要求写出结论,不需用证明)

查看答案和解析>>

科目:高中数学 来源:2012年上海市长宁区高考数学二模试卷(理科)(解析版) 题型:解答题

设抛物线C:y2=2px(p>0)的焦点为F,过F且垂直于x轴的直线与抛物线交于P1,P2两点,已知|P1P2|=8.
(1)求抛物线C的方程;
(2)设m>0,过点M(m,0)作方向向量为的直线与抛物线C相交于A,B两点,求使∠AFB为钝角时实数m的取值范围;
(3)①对给定的定点M(3,0),过M作直线与抛物线C相交于A,B两点,问是否存在一条垂直于x轴的直线与以线段AB为直径的圆始终相切?若存在,请求出这条直线;若不存在,请说明理由.
②对M(m,0)(m>0),过M作直线与抛物线C相交于A,B两点,问是否存在一条垂直于x轴的直线与以线段AB为直径的圆始终相切?(只要求写出结论,不需用证明)

查看答案和解析>>

同步练习册答案