精英家教网 > 高中数学 > 题目详情

【题目】如图,直线l过抛物线的焦点F且交抛物线于AB两点,直线l与圆交于CD两点,若,设直线l的斜率为k,则________.

【答案】

【解析】

由题意设直线的方程与抛物线联立求出两根之和,进而求出弦长的值,再由圆的方程可得圆心为抛物线的焦点可得为圆的直径,求出的值,再由题意可得的值,由题意可得A的横坐标,代入直线的方程,可得A的纵坐标,代入抛物线的方程中可得斜率的平方的值.

由题意圆的圆心为抛物线的焦点F

再由题意可得直线的斜率不为0,设直线的方程为:

,联立直线与抛物线的方程:

整理可得,所以

由抛物线的性质可得:弦长

由题意可得的直径2

所以

,所以可得:

因为

所以,代入直线中可得

A点坐标代入抛物线的方程,整理可得

解得

因为,所以

故答案为:.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在等比数列中,已知设数列的前n项和为,且

1)求数列通项公式;

2)证明:数列是等差数列;

3)是否存在等差数列,使得对任意,都有?若存在,求出所有符合题意的等差数列;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数在定义域内有两个不同的极值点.

1)求的取值范围;

2)设两个极值点分别为:,证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四边形中,平面平面.

1)求证:

2)若二面角是直二面角,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点为,过点且与轴垂直的直线被椭圆截得的线段长为,且与短轴两端点的连线相互垂直.

1)求椭圆的方程;

2)若圆上存在两点,椭圆上存在两个点满足:三点共线,三点共线,且,求四边形面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线C的方程为,以原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为.

1)求直线l的直角坐标方程;

2)已知P是曲线C上的一动点,过点P作直线交直线于点A,且直线与直线l的夹角为45°,若的最大值为6,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正三棱柱柱中底面边长为2,高为3DE分别在上,且.

1AE上是否存在一点P,使得?若不存在,说明理由;若存在,指出P的位置;

2)求点到截面ADE的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,函数

1)若上单调递增,则的取值范围为______________

2)若对于任意实数,方程有且只有一个实数根,且,函数的图象与函数的图象有三个不同的交点,则的取值范围为______________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是自然对数的底数),是函数的一个极值点.

1)求函数的单调递增区间;

2)设,若,不等式恒成立,求的最大值.

查看答案和解析>>

同步练习册答案