精英家教网 > 高中数学 > 题目详情
4.计算:
(1)(0.0081)${\;}^{-\frac{1}{4}}$一[3×($\frac{7}{8}$)0]-1×[81-0.25+($\frac{27}{8}$)${\;}^{-\frac{1}{3}}$]${\;}^{-\frac{1}{2}}$-10×0.027${\;}^{\frac{1}{3}}$;
(2)已知x+y=12,xy=9,且x<y,求$\frac{{x}^{\frac{1}{2}}+{y}^{\frac{1}{2}}}{{x}^{\frac{1}{2}}-{y}^{\frac{1}{2}}}$.

分析 根据指数和对数的运算性质解答即可.

解答 解:(1)原式=[(0.3)${\;}^{4}]^{-\frac{1}{4}}$-${\;}^{\frac{1}{4}}$-$\frac{1}{3}$($\frac{1}{3}$$+\frac{2}{3}$)${\;}^{-\frac{1}{2}}$-10×0.3
=$\frac{10}{3}$-$\frac{1}{3}$-3
=0.
(2)原式=-$\frac{\sqrt{({x}^{\frac{1}{2}}+{y}^{\frac{1}{2}})^{2}}}{\sqrt{({x}^{\frac{1}{2}}-{y}^{\frac{1}{2}})^{2}}}$
=-$\frac{\sqrt{x+y+2•(xy)^{\frac{1}{2}}}}{\sqrt{x+y-2•(xy)^{\frac{1}{2}}}}$
=-$\frac{\sqrt{12+6}}{\sqrt{12-6}}$
=-$\sqrt{3}$

点评 本题主要考查指数运算和对数的运算性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=(2$\sqrt{3}$cosωx+sinωx)sinωx-sin2($\frac{π}{2}$+ωx)(ω>0),且函数y=f(x)的图象的一个对称中心到最近的对称轴的距离为$\frac{π}{4}$.
(Ⅰ)求ω的值和函数f(x)的单调递增区间;
(Ⅱ) 求函数f(x)在区间$[{0,\frac{π}{2}}]$上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.集合A={3,2a},B={a,b},若A∩B={2},则a+b=3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知二次函数f(x)=ax2+bx+c(a,b,c∈R)
(1)若b=2a,a<0写出函数f(x)的单调递减区间;
(2)若a=1,c=2,若存在实数b使得函数f(x)在区间(0,2)内有两个不同的零点,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知数列{xn}满足lgxn+1=1+lgxn(n∈N*),且x1+x2+x3+…+x100=100,则lg(x101+x102+…+x200)的值为(  )
A.102B.101C.100D.99

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数f(x)=$\sqrt{x}$-x的单调递减区间为(  )
A.(0,$\frac{1}{2}$)B.(0,$\frac{1}{4}$)∪$\frac{1}{2}$,+∞)C.($\frac{1}{4}$,+∞)D.($\frac{1}{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.求满足下列条件的数列{an}的前n项和Sn
(1)an=(2n-1)+$\frac{1}{{2}^{n}}$;
(2)an=(3n+2)•2-n
(3)an=-$\frac{n}{{2}^{n-1}}$;
(4)an=(3n-2)×($\frac{1}{4}$)n

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若y=lnx,则其图象在x=2处的切线斜率是(  )
A.1B.$\frac{1}{2}$C.2D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.为了研究“教学方式”对教学质量的影响,某高中英语老师分别用两种不同的教学方法对入学英语平均分和优秀率都相同的甲乙两个高一新班进行教学(勤奋程度和自觉性相同),以下茎叶图为甲乙两班(每班均20人)学生的英语期末成绩,若成绩不低于125分的为优秀,填写下面的2×2列联表,并判断是否有97.5%的把握认为“成绩优秀与教学方式有关”.

 甲班乙班合计
优秀   
非优秀   
合计   
参考公式:X2=$\frac{n({n}_{11}{n}_{22}-{n}_{12}{n}_{21})^{2}}{{n}_{1+}{n}_{2+}{n}_{+1}{{n}_{+2}}^{\;}}$
附表:
P(X2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

同步练习册答案