精英家教网 > 高中数学 > 题目详情
18.极坐标系与直角坐标系xOy有相同的长度单位,以原点为极点,以x轴正半轴为极轴,曲线C1的极坐标方程为ρ=4sinθ,曲线C2的参数方程为$\left\{{\begin{array}{l}{x=m+tcosα}\\{y=tsinα}\end{array}}\right.$(t为参数,0≤α<π),射线$θ=φ,θ=φ+\frac{π}{4},θ=φ-\frac{π}{4}$与曲线C1交于(不包括极点O)三点A,B,C.
(1)求证:$|{OB}|+|{OC}|=\sqrt{2}|{OA}|$;
(2)当$φ=\frac{5π}{12}$时,B,C两点在曲线C2上,求m与α的值.

分析 (1)依题意|OA|=4sinφ,$|{OB}|=4sin({φ+\frac{π}{4}}),|{OC}|=4sin({φ-\frac{π}{4}})$,利用三角恒等变换化简|OB|+|OC|为$4\sqrt{2}sinφ=\sqrt{2}|{OA}|$,命题得证.
(2)当$φ=\frac{5π}{12}$时,B,C两点的极坐标分别为$({2\sqrt{3},\frac{2π}{3}}),({2,\frac{π}{6}})$,再把它们化为直角坐标,根据C2是经过点(m,0),倾斜角为α的直线,又经过点B,C的直线方程为$y=-\frac{{\sqrt{3}}}{3}x+2$,由此可得m及直线的斜率,从而求得α的值.

解答 (1)证明:依题意|OA|=4sinφ,$|{OB}|=4sin({φ+\frac{π}{4}}),|{OC}|=4sin({φ-\frac{π}{4}})$,
则$|{OB}|+|{OC}|=4sin({φ+\frac{π}{4}})+4sin({φ-\frac{π}{4}})=2\sqrt{2}({sinφ+cosφ})+2\sqrt{2}({sinφ-cosφ})$=$4\sqrt{2}sinφ=\sqrt{2}|{OA}|$;
(2)解:当$φ=\frac{5π}{12}$时,B,C两点的极坐标分别为$({2\sqrt{3},\frac{2π}{3}}),({2,\frac{π}{6}})$,
化为直角坐标为$B({-\sqrt{3},3}),C({\sqrt{3},1})$,
曲线C2是经过点(m,0),且倾斜角为α的直线,又因为经过点B,C的直线方程为$y=-\frac{{\sqrt{3}}}{3}x+2$,
所以$m=2\sqrt{3},α=\frac{5π}{6}$.

点评 本题主要考查把参数方程化为直角坐标方程,把点的极坐标化为直角坐标,直线的倾斜角和斜率,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.函数$y=tan(\frac{π}{4}-2x)$的定义域为{x|x≠$\frac{kπ}{2}$+$\frac{3}{8}$π,k∈z}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.高二数学ICTS竞赛初赛考试后,某校对95分以上的成绩进行统计,其频率分布直方图如图所示,其中[135,145]分数段的人数为2人.
(1)求这组数据的平均数M;
(2)现根据初赛成绩从第一组和第五组(从低分段到高分段依次为第一组、第二组、…、第五组)中任意选出两人,形成帮扶学习小组.若选出的两人成绩之差大于20分,则称这两人为“黄金搭档组”,试求选出的两人为“黄金搭档组”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知a∈R,函数f(x)=x3-ax2+ax+a,g(x)=f(x)+(a-3)x.
(1)求证:曲线y=f(x)在点(1,f(1))处的切线过点(2,4);
(2)若g(1)是g(x)在区间(0,3]上的极大值,但不是最大值,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.两圆C1:x2+y2+D1x+E1y+F1=0(圆心C1,半径r1)与C2:x2+y2+D2x+E2y+F2=0(圆心C2,半径r2)不是同心圆,方程相减(消去二次项)得到的直线l:(D1-D2)x+(E1-E2)y+(F1-F2)=0叫做圆C1与圆C2的根轴.
(1)求证:当C1与C2相交于A,B两点时,AB所在的直线为根轴l;
(2)对根轴上任意的点P,求证:|PC1|2-r12=|PC2|2-r22
(3)设根轴l与C1C2交于点H,|C1C2|=d,求证:H分$\overrightarrow{{C_1}{C_2}}$的比λ=$\frac{{{d^2}+{r_1}^2-{r_2}^2}}{{{d^2}-{r_1}^2+{r_2}^2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若函数f(x)满足?a、b∈R,都有$3f(\frac{a+2b}{3})=f(a)+2f(b)$,且f(1)=1,f(4)=7,则f(2017)=4033.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设函数f(x)=xm-ax的导函数f′(x)=2x+1,则a•m的值为(  )
A.1B.2C.3D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了40个用户,得到用户对产品满意度评分,得到A地区用户满意度评分的频率分布直方图和B地区用户满意度评分的频率分布表.

B地区用户满意度评分的频数分布表:
满意度评分分组[50,60)[60,70)[70,80)[80,90)[90,100]
频数2814106
(1)在答题卡上作出B地区用户满意度评分的频率分布直方图,并通过直方图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);
(2)根据用户满意度评分表,将用户的满意度分为三个等级:
满意度评分低于70分70分到89分不低于90分
满意度等级不满意满意非常满意
估计那个地区用户的满意度等级为不满意的概率大?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知两圆的方程分别为x2+y2+6x-4=0和x2+y2+6y-28=0且交于A,B两点
(1)求AB所在的直线方程
(2)求两圆公共弦AB的长.

查看答案和解析>>

同步练习册答案