精英家教网 > 高中数学 > 题目详情
记函数f(x)=
1
x-2
的定义域为集合A,函数g(x)=
9-x2
的定义域为集合B.
(1)求A∩B和A∪B;
(2)若C={x|x-p>0},C⊆A,求实数p的取值范围.
分析:(1)由f(x)=
1
x-2
的定义域为集合A,知A={x|x-2>0}={x|x>2},由函数g(x)=
9-x2
的定义域为集合B,知B={x|9-x2≥0}={x|-3≤x≤3},由此能求出A∩B和A∪B.
(2)由C={x|x-p>0}={x|x>p},A={x|x>2},且C⊆A,能求出实数p的取值范围.
解答:解:(1)∵f(x)=
1
x-2
的定义域为集合A,
∴A={x|x-2>0}={x|x>2},
∵函数g(x)=
9-x2
的定义域为集合B,
∴B={x|9-x2≥0}={x|-3≤x≤3},
∴A∩B={x|-2<x≤3},
A∪B={x|x≥-3}.
(2)∵C={x|x-p>0}={x|x>p},A={x|x>2},
且C⊆A,
∴p≥2.
点评:本题考查集合的交、并、补集的混合运算,是基础题.解题时要认真审题,仔细解答.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知点M(x1,f(x1))是函数f(x)=
1x
,x∈(0,+∞)图象C上的一点,记曲线C在点M处的切线为l.
(1)求切线l的方程;
(2)设l与x轴,y轴的交点分别为A、B,求△AOB周长的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

记函数f(x)的定义域为D,若存在x0∈D,使f(x0)=x0成立,则称以(x0,y0)为坐标的点是函数f(x)的图象上的“稳定点”.
(1)若函数f(x)=
3x-1x+a
的图象上有且只有两个相异的“稳定点”,试求实数a的取值范围;
(2)已知定义在实数集R上的奇函数f(x)存在有限个“稳定点”,求证:f(x)必有奇数个“稳定点”.

查看答案和解析>>

科目:高中数学 来源: 题型:

记函数f(x)=
x+1x
的导函数为f′(x),则 f′(1)的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

记函数f(x)=
1
x-2
的定义域为集合A,集合B={x|-3≤x≤3}.
(1)求A∩B和A∪B;
(2)若C={x|x-p>0},C⊆A,求实数p的取值范围.

查看答案和解析>>

同步练习册答案