精英家教网 > 高中数学 > 题目详情

【题目】已知下列各命题:

①两两相交且不共点的三条直线确定一个平面:

②若真线不平行于平面,则直线与平面有公共点:

③若两个平面垂直,则一个平面内的已知直线必垂直于另一个平面的无数条直线:

④若两个二面角的两个面分别对应垂直,则这两个二面角相等或互补.

则其中正确的命题共有( )个

A.B.C.D.

【答案】B

【解析】

①利用平面的基本性质判断.②利用直线与平面的位置关系判断.③由面面垂直的性质定理判断.④通过举反例来判断.

①两两相交且不共点,形成三个不共线的点,确定一个平面,故正确.

②若真线不平行于平面,则直线与平面相交或在平面内,所以有公共点,故正确.

③若两个平面垂直,则一个平面内,若垂直交线的直线则垂直另一个平面,垂直另一平面内所有直线,若不垂直与交线,也与另一平面内垂直交线的直线及其平行线垂直,也有无数条,故正确.

④若两个二面角的两个面分别对应垂直,则这两个二面角关系不确定,如图:

在正方体ABCD-A1B1C1D1中,二面角D-AA1-F与二面角D1-DC-A的两个半平面就是分别对应垂直的,但是这两个二面角既不相等,也不互补.故错误..

故选:B

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知分别为椭圆的左右焦点在椭圆上的周长为6.

(Ⅰ)求椭圆的标准方程;

(Ⅱ)过点的直线与椭圆交于两点为坐标原点是否存在常数使得恒成立请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图为某市国庆节7天假期的楼房认购量与成交量的折线图,小明同学根据折线图对这7天的认购量(单位:套)与成交量(单位:套)作出如下判断:①日成交量的中位数是16;②日成交量超过日平均成交量的有2天;③认购量与日期正相关;④10月7日认购量的增幅大于10月7日成交量的增幅.则上述判断正确的个数为( )

A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】x1x2是函数f(x)aln xbx2x的两个极值点.

(1)试确定常数ab的值;

(2)判断x1x2是函数f(x)的极大值点还是极小值点,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是等差数列,满足,数列满足,且是等比数列.

1)求数列的通项公式;

2)求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知平面平行于三棱锥的底面,等边所在的平面与底面垂直,且,设

1)求证:

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆E1(a>b>0)的离心率为,焦点到相应准线的距离为.

(1) 求椭圆E的标准方程;

(2) 已知P(t0)为椭圆E外一动点,过点P分别作直线l1l2,直线l1l2分别交椭圆E于点AB和点CD,且l1l2的斜率分别为定值k1k2,求证:为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给定平面上的五个点,任意三点不共线.由这些点连成4条线段,每个点至少是一条线段的端点.则不同的连结方式有( ).

A. 120 B. 125 C. 130 D. 135

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点,直线,设圆的半径为1, 圆心在.

1)若圆心也在直线上,过点作圆的切线,求切线方程;

2)若圆上存在点,使,求圆心的横坐标的取值范围.

查看答案和解析>>

同步练习册答案