精英家教网 > 高中数学 > 题目详情

【题目】已知全集U=R,集合A={x|1<x<4},B={x|x≤3m﹣4或x≥8+m}(m<6)
(1)若m=2,求A∩(UB)
(2)若A∩(UB)=,求实数m的取值范围.

【答案】
(1)解:全集U=R,集合A={x|1<x<4},B={x|x≤3m﹣4或x≥8+m}(m<6)

m=2时,B={x|x≤2或x≥10},

UB={x|2<x<10},

∴A∩(UB)={x|2<x<4}


(2)解:UB={x|3m﹣4<x<8+m},

UB=时,3m﹣4≥8+m,解得m≥6,不合题意,舍去;

UB≠时,应满足

解得 ≤m<6,m≤﹣7,

∴实数m的取值范围是m≤﹣7,或 ≤m<6


【解析】(1)求出m=2时集合B,再根据补集与交集的定义计算即可;(2)求出UB,讨论UB是空集和非空集合时,求出满足条件的m取值范围.
【考点精析】掌握交、并、补集的混合运算是解答本题的根本,需要知道求集合的并、交、补是集合间的基本运算,运算结果仍然还是集合,区分交集与并集的关键是“且”与“或”,在处理有关交集与并集的问题时,常常从这两个字眼出发去揭示、挖掘题设条件,结合Venn图或数轴进而用集合语言表达,增强数形结合的思想方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示,抛物线y=1﹣x2与x轴所围成的区域是一块等待开垦的土地,现计划在该区域内围出一块矩形地块ABCD作为工业用地,其中A、B在抛物线上,C、D在x轴上.已知工业用地每单位面积价值为3a元(a>0),其它的三个边角地块每单位面积价值a元.

(1)求等待开垦土地的面积;
(2)如何确定点C的位置,才能使得整块土地总价值最大.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的函数f(x)满足
(1)求函数f(x)的解析式;
(2)求函数g(x)的单调区间;
(3)如果s、t、r满足|s﹣r|≤|t﹣r|,那么称s比t更靠近r.当a≥2且x≥1时,试比较 和ex1+a哪个更靠近lnx,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在△ABC中, ,点D是BC的中点. ( I)求证:
( II)直线l过点D且垂直于BC,E为l上任意一点,求证: 为常数,并求该常数;
( III)如图2,若 ,F为线段AD上的任意一点,求 的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在( n的展开式中,第6项为常数项.
(1)求n;
(2)求含x2项的系数;
(3)求展开式中所有的有理项.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ,则函数y=f(1﹣x)的最大值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0,0<φ< )的图象与x轴相邻两个交点间的距离为 ,且图象上一个最低点为M( ,﹣2). (Ⅰ)求f(x)的解析式;
(Ⅱ)求f(x)的单调递增区间;
(Ⅲ)当x∈[ ]时,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在RtABC中,∠ACBAC3 BC2P是△ABC内的一点.

(1)若P是等腰直角三角形PBC的直角顶点,求PA的长;

(2)若∠BPC,设∠PCBθ,求△PBC的面积S(θ)的解析式,并求S(θ)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线 的焦点与椭圆 的一个焦点重合,点在抛物线上,过焦点的直线交抛物线于两点.

(Ⅰ)求抛物线的方程以及的值;

(Ⅱ)记抛物线的准线轴交于点,试问是否存在常数,使得都成立?若存在,求出实数的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案